2024-01-04 21:07:52 +01:00
|
|
|
from flask import Flask, request, jsonify, session
|
|
|
|
|
|
|
|
from cat_detection import is_cat
|
|
|
|
|
|
|
|
# Define flask app
|
|
|
|
app = Flask(__name__)
|
|
|
|
app.secret_key = 'secret_key'
|
|
|
|
|
|
|
|
|
|
|
|
@app.route('/detect-cat', methods=['POST'])
|
|
|
|
def upload_file():
|
|
|
|
# 'Key' in body should be named as 'image'. Type should be 'File' and in 'Value' we should upload image from disc.
|
|
|
|
file = request.files['image']
|
|
|
|
if file.filename == '':
|
|
|
|
return jsonify({'error': "File name is empty. Please name a file."}), 400
|
|
|
|
max_class, max_prob = is_cat(file)
|
|
|
|
|
|
|
|
# Save result in session
|
|
|
|
session['result'] = max_class, max_prob
|
|
|
|
|
|
|
|
# Tworzenie komunikatu na podstawie wyniku analizy zdjęcia
|
|
|
|
translator = {
|
|
|
|
281: "tabby cat",
|
|
|
|
282: "tiger cat",
|
|
|
|
283: "persian cat",
|
|
|
|
284: "siamese cat",
|
|
|
|
285: "egyptian cat"
|
|
|
|
}
|
|
|
|
if max_prob is not None:
|
|
|
|
result = f"The image is recognized as '{translator[max_class]}' with a probability of {round(max_prob * 100, 2)}%"
|
|
|
|
else:
|
|
|
|
result = f"The image is not recognized as a class within the range 281-285 ({max_class})"
|
2024-01-04 18:49:46 +01:00
|
|
|
|
2024-01-04 21:07:52 +01:00
|
|
|
return jsonify({'result': result}), 200
|
2024-01-04 18:49:46 +01:00
|
|
|
|
|
|
|
|
2024-01-04 21:07:52 +01:00
|
|
|
if __name__ == '__main__':
|
|
|
|
app.run(debug=True)
|