initial commit
This commit is contained in:
commit
dd0ae28c74
8
.idea/.gitignore
vendored
Normal file
8
.idea/.gitignore
vendored
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
# Default ignored files
|
||||||
|
/shelf/
|
||||||
|
/workspace.xml
|
||||||
|
# Editor-based HTTP Client requests
|
||||||
|
/httpRequests/
|
||||||
|
# Datasource local storage ignored files
|
||||||
|
/dataSources/
|
||||||
|
/dataSources.local.xml
|
6
.idea/misc.xml
Normal file
6
.idea/misc.xml
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="MarkdownSettingsMigration">
|
||||||
|
<option name="stateVersion" value="1" />
|
||||||
|
</component>
|
||||||
|
</project>
|
BIN
Cephalophus_niger.jpg
Normal file
BIN
Cephalophus_niger.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 732 KiB |
BIN
FELV-cat.jpg
Normal file
BIN
FELV-cat.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 105 KiB |
39
basics.ipynb
Normal file
39
basics.ipynb
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 7,
|
||||||
|
"id": "initial_id",
|
||||||
|
"metadata": {
|
||||||
|
"collapsed": true,
|
||||||
|
"ExecuteTime": {
|
||||||
|
"end_time": "2024-01-04T16:38:33.550511800Z",
|
||||||
|
"start_time": "2024-01-04T16:38:33.542353Z"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 2
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython2",
|
||||||
|
"version": "2.7.6"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 5
|
||||||
|
}
|
59
main.py
Normal file
59
main.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
from PIL import Image
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torchvision.models.resnet import resnet50, ResNet50_Weights
|
||||||
|
from torchvision.transforms import transforms
|
||||||
|
|
||||||
|
# Load the pre-trained model
|
||||||
|
model = resnet50(weights=ResNet50_Weights.DEFAULT)
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
|
||||||
|
# Define the image transformations
|
||||||
|
preprocess = transforms.Compose([
|
||||||
|
transforms.Resize(256),
|
||||||
|
transforms.CenterCrop(224),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
||||||
|
])
|
||||||
|
|
||||||
|
|
||||||
|
def is_cat(image_path):
|
||||||
|
# Open the image
|
||||||
|
img = Image.open(image_path)
|
||||||
|
|
||||||
|
# Preprocess the image
|
||||||
|
img_t = preprocess(img)
|
||||||
|
batch_t = torch.unsqueeze(img_t, 0)
|
||||||
|
|
||||||
|
# Make the prediction
|
||||||
|
out = model(batch_t)
|
||||||
|
|
||||||
|
# Apply softmax to get probabilities
|
||||||
|
probabilities = F.softmax(out, dim=1)
|
||||||
|
|
||||||
|
# Get the maximum predicted class and its probability
|
||||||
|
max_prob, max_class = torch.max(probabilities, dim=1)
|
||||||
|
max_prob = max_prob.item()
|
||||||
|
max_class = max_class.item()
|
||||||
|
|
||||||
|
# Check if the maximum predicted class is within the range 281-285
|
||||||
|
if 281 <= max_class <= 285:
|
||||||
|
return max_class, max_prob
|
||||||
|
else:
|
||||||
|
return max_class, None
|
||||||
|
|
||||||
|
|
||||||
|
image_path = 'pobrane.jpg'
|
||||||
|
max_class, max_prob = is_cat(image_path)
|
||||||
|
translator = {
|
||||||
|
281: "tabby cat",
|
||||||
|
282: "tiger cat",
|
||||||
|
283: "persian cat",
|
||||||
|
284: "siamese cat",
|
||||||
|
285: "egyptian cat"
|
||||||
|
}
|
||||||
|
if max_prob is not None:
|
||||||
|
print(f"The image is recognized as '{translator[max_class]}' with a probability of {round(max_prob * 100, 2)}%")
|
||||||
|
else:
|
||||||
|
print(f"The image is not recognized as a class within the range 281-285 ({max_class})")
|
BIN
pobrane.jpg
Normal file
BIN
pobrane.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 7.1 KiB |
Loading…
Reference in New Issue
Block a user