Compare commits

...

19 Commits

Author SHA1 Message Date
Michael
7fe54f35d7
add CORS 2024-01-21 11:27:01 +01:00
Michael
bcf0d04de6
readme quick fix 2024-01-20 18:36:37 +01:00
c1f7cd5d92 Zaktualizuj 'README.md' 2024-01-20 18:11:42 +01:00
7ac72b91cd Merge pull request 'Bugfixes' (#6) from flask-ML into dev
Reviewed-on: #6
2024-01-20 18:09:34 +01:00
Michael
030d5e432e
readme guides 2024-01-20 18:09:04 +01:00
Michael
80706e2c16
quick bugfix 2024-01-20 18:06:54 +01:00
290772dfa2 Merge pull request 'flask-ML' (#5) from flask-ML into dev
Reviewed-on: #5
2024-01-20 17:51:32 +01:00
e886e8af7e Usuń '.idea/.gitignore' 2024-01-20 17:51:08 +01:00
5f7e15dbea Usuń '.idea/misc.xml' 2024-01-20 17:51:00 +01:00
Michael
557e16dfd6
delete polish comments 2024-01-20 17:49:04 +01:00
Michael
e0046ef98a
revert 2024-01-20 17:48:16 +01:00
Michael
9f3bbb0d87
add docker, tests, scripts, test images and bugfixes 2024-01-20 17:45:24 +01:00
a00c20f3b1 Merge pull request 'API improvements' (#4) from flask-ML into dev
Reviewed-on: #4
2024-01-18 23:34:15 +01:00
Michael
294fb339ed
bugfixes 2024-01-17 19:46:35 +01:00
Michael
695592b7b6
requirements.txt 2024-01-14 15:05:47 +01:00
Michael
663ef6d80d
API improvements 2024-01-14 14:53:54 +01:00
caf98c54cd Merge pull request 'Flask API' (#2) from flask-ML into dev
Reviewed-on: #2
2024-01-10 08:38:17 +01:00
Michael
bf70d8eb9c
Flask API 2024-01-04 21:07:52 +01:00
68ce008dea initial commit 2024-01-04 18:53:50 +01:00
38 changed files with 456 additions and 105 deletions

8
.idea/.gitignore vendored
View File

@ -1,8 +0,0 @@
# Default ignored files
/shelf/
/workspace.xml
# Editor-based HTTP Client requests
/httpRequests/
# Datasource local storage ignored files
/dataSources/
/dataSources.local.xml

View File

@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="MarkdownSettingsMigration">
<option name="stateVersion" value="1" />
</component>
</project>

11
README.md Normal file
View File

@ -0,0 +1,11 @@
Cat detection
Quick guide:
1. install docker
2. build image with `./scripts/build_image.bat`
3. run container with `./scripts/start.bat`
Quick tests guide:
1. run unit tests `./scripts/run_tests.bat`
Have fun!

View File

@ -1,39 +0,0 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 7,
"id": "initial_id",
"metadata": {
"collapsed": true,
"ExecuteTime": {
"end_time": "2024-01-04T16:38:33.550511800Z",
"start_time": "2024-01-04T16:38:33.542353Z"
}
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

BIN
cat.png

Binary file not shown.

Before

Width:  |  Height:  |  Size: 204 KiB

58
cat_detection.py Normal file
View File

@ -0,0 +1,58 @@
from io import BytesIO
import numpy as np
from PIL import Image
from keras.src.applications.resnet import preprocess_input, decode_predictions
from keras.applications.resnet import ResNet50
"""
Recognition file.
Model is ResNet50. Pretrained model to image recognition.
If model recognize cat then returns response with first ten CAT predictions.
If first prediction is not a cat then returns False.
If prediction is not a cat (is not within list_of_labels) then skips this prediction.
Format of response:
{
'label': {label}
'score': {score}
}
"""
model = ResNet50(weights='imagenet')
# PRIVATE Preprocess image method
def _preprocess_image(image):
try:
img = Image.open(BytesIO(image.read()))
img = img.resize((224, 224))
img_array = np.array(img)
img_array = np.expand_dims(img_array, axis=0)
img_array = preprocess_input(img_array)
return img_array
except Exception as e:
print(f"Error preprocessing image: {e}")
return None
# Generate response
def _generate_response(decoded_predictions, list_of_labels):
results = {}
for i, (imagenet_id, label, score) in enumerate(decoded_predictions):
if i == 0 and label not in list_of_labels:
return None
if score < 0.01:
break
if label in list_of_labels:
results[len(results) + 1] = {"label": label, "score": round(float(score), 2)}
return results
# Cat detection
def detect_cat(image_file, list_of_labels):
img_array = _preprocess_image(image_file)
prediction = model.predict(img_array)
decoded_predictions = decode_predictions(prediction, top=10)[0]
return _generate_response(decoded_predictions, list_of_labels)

6
docker/.dockerignore Normal file
View File

@ -0,0 +1,6 @@
*.md
/venv
.git
__pycache__
.pytest_cache
/tests

11
docker/Dockerfile Normal file
View File

@ -0,0 +1,11 @@
FROM python:3.11
WORKDIR /app
COPY . /app
RUN pip install --no-cache-dir -r requirements.txt
EXPOSE 5000
CMD ["python", "main.py"]

10
docker/docker-compose.yml Normal file
View File

@ -0,0 +1,10 @@
version: '3.3'
services:
cat-detection:
image: cat-detection
build:
context: ../
dockerfile: ./docker/Dockerfile
ports:
- "5000:5000"

6
docs/basics.md Normal file
View File

@ -0,0 +1,6 @@
#inzynieriaOprogramowania #semestr3
# Faza 1 - ogólna architektura projektu
Aplikacja oparta na micro-frameworku Flask, w której użytkownik przesyła zdjęcie na serwer i w odpowiedzi dostaje na ile % na zdjęciu znajduje się kot (poszczególne przedziały będą miały inną informację typu 100%-95%: "to *prawie* na pewno jest kot" itd.).
Wyniki oceny będą przechowywane w sesji - będą zapisane do momentu wyłączenia przeglądarki, przez co nie ma potrzeby stawiania bazy danych.

53
docs/docs.md Normal file
View File

@ -0,0 +1,53 @@
# Api
Port -> 5000
endpoint -> api/v1/detect-cat
Key -> 'Image'
Value -> {UPLOADED_FILE}
Flask Rest API application to cat recognition.
If request is valid then send response with results of recognition.
If key named 'Image' in body does not occur then returns 400 (BAD REQUEST).
Otherwise, returns 200 with results of recognition.
Format of response:
```json
{
"lang": "{users_lang}",
"results": {
"{filename}": {
"isCat": "{is_cat}",
"results": {
"1": "{result}",
"2": "{result}",
"3": "{result}",
"4": "{result}",
"5": "{result}",
"6": "{result}",
"7": "{result}",
"8": "{result}",
"9": "{result}",
"10": "{result}"
}
}
},
"errors": [
"{error_message}",
"{error_message}"
]
}
```
Format of result:
```json
{
"label": "{label}",
"score": "{score}"
}
```
Example response:
```json
```

30
language_label_mapper.py Normal file
View File

@ -0,0 +1,30 @@
import os
from jproperties import Properties
"""
Translator method.
If everything fine then returns translated labels.
Else throws an Exception and returns untranslated labels.
"""
def translate(to_translate, lang):
try:
config = Properties()
script_directory = os.path.dirname(os.path.abspath(__file__))
resources_path = os.path.join(script_directory, "./resources")
# Load properties file for given lang
with open(os.path.join(resources_path, f"./{lang}.properties"), 'rb') as config_file:
config.load(config_file, encoding='UTF-8')
# Translate labels for given to_translate dictionary
for index, label_info in to_translate.items():
label = label_info.get("label")
to_translate[index]["label"] = config.get(label).data
return to_translate, []
except Exception as e:
error_message = f"Error translating labels: {e}"
print(error_message)
return to_translate, error_message

153
main.py
View File

@ -1,59 +1,108 @@
from PIL import Image
import torch
import torch.nn.functional as F
from torchvision.models.resnet import resnet50, ResNet50_Weights
from torchvision.transforms import transforms
from flask import Flask, request, Response, json
from cat_detection import detect_cat
from language_label_mapper import translate
from validator import validate
from flask_cors import CORS
# Load the pre-trained model
model = resnet50(weights=ResNet50_Weights.DEFAULT)
model.eval()
# Define the image transformations
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
"""
Flask Rest API application to cat recognition.
If request is valid then send response with results of recognition.
If key named 'Image' in body does not occurred then returns 400 (BAD REQUEST).
Otherwise returns 200 with results of recognition.
Format of response:
{
"lang": {users_lang},
"results": {
{filename}: {
"isCat": {is_cat},
"results": {
"1": {result}
"2": {result}
"3": {result}
...
"10" {result}
}
},
...
},
errors[
{error_message},
{error_message},
...
]
}
To see result format -> cat_detection.py
"""
def is_cat(image_path):
# Open the image
img = Image.open(image_path)
# Define flask app
app = Flask(__name__)
app.secret_key = 'secret_key'
CORS(app)
# Preprocess the image
img_t = preprocess(img)
batch_t = torch.unsqueeze(img_t, 0)
# Available cats
list_of_labels = [
'lynx',
'lion',
'tiger',
'cheetah',
'leopard',
'jaguar',
'tabby',
'Egyptian_cat',
'cougar',
'Persian_cat',
'Siamese_cat',
'snow_leopard',
'tiger_cat'
]
# Make the prediction
out = model(batch_t)
# Apply softmax to get probabilities
probabilities = F.softmax(out, dim=1)
# Get the maximum predicted class and its probability
max_prob, max_class = torch.max(probabilities, dim=1)
max_prob = max_prob.item()
max_class = max_class.item()
# Check if the maximum predicted class is within the range 281-285
if 281 <= max_class <= 285:
return max_class, max_prob
else:
return max_class, None
# Available languages
languages = {'pl', 'en'}
image_path = 'wolf.jpg'
max_class, max_prob = is_cat(image_path)
translator = {
281: "tabby cat",
282: "tiger cat",
283: "persian cat",
284: "siamese cat",
285: "egyptian cat"
}
if max_prob is not None:
print(f"The image is recognized as '{translator[max_class]}' with a probability of {round(max_prob * 100, 2)}%")
else:
print(f"The image is not recognized as a class within the range 281-285 ({max_class})")
@app.route('/api/v1/detect-cat', methods=['POST'])
def upload_file():
# Validate request
error_messages = validate(request)
# If any errors occurred, return 400 (BAD REQUEST)
if len(error_messages) > 0:
errors = json.dumps(
{
'errors': error_messages
}
)
return Response(errors, status=400, mimetype='application/json')
# Get files from request
files = request.files.getlist('image')
# Get user's language (Value in header 'Accept-Language'). Default value is English
lang = request.accept_languages.best_match(languages, default='en')
# Define JSON structure for results
results = {
'lang': lang,
'results': {},
'errors': []
}
# Generate results
for file in files:
predictions = detect_cat(file, list_of_labels)
if predictions is not None:
predictions, error_messages = translate(predictions, lang)
results['results'][file.filename] = {
'isCat': False if not predictions else True,
**({'predictions': predictions} if predictions is not None else {})
}
if len(error_messages) > 1:
results['errors'].append(error_messages)
# Send response with 200 (Success)
return Response(json.dumps(results), status=200, mimetype='application/json')
if __name__ == '__main__':
app.run(host='0.0.0.0')

9
requirements.txt Normal file
View File

@ -0,0 +1,9 @@
flask==3.0.0
numpy==1.26.3
pillow==10.2.0
keras==2.15.0
jproperties==2.1.1
tensorflow==2.15.0
werkzeug==3.0.1
pytest==7.4.4
flask-cors==4.0.0

14
resources/en.properties Normal file
View File

@ -0,0 +1,14 @@
# EN
lynx=lynx
lion=lion
tiger=tiger
cheetah=cheetah
leopard=leopard
jaguar=jaguar
tabby=tabby
Egyptian_cat=Egyptian cat
cougar=cougar
Persian_cat=Persian cat
Siamese_cat=Siamese cat
snow_leopard=snow leopard
tiger_cat=tiger cat

14
resources/pl.properties Normal file
View File

@ -0,0 +1,14 @@
# PL
lynx=ryś
lion=lew
tiger=tygrys
cheetah=gepard
leopard=lampart
jaguar=jaguar
tabby=kot pręgowany
Egyptian_cat=kot egipski
cougar=puma
Persian_cat=kot perski
Siamese_cat=kot syjamski
snow_leopard=lampart śnieżny
tiger_cat=kot tygrysi

24
scripts/build_image.bat Normal file
View File

@ -0,0 +1,24 @@
@echo off
chcp 65001 >nul
docker -v >nul 2>&1
if %errorlevel% neq 0 (
echo Docker is not installed.
exit /b 1
)
docker info >nul 2>&1
if %errorlevel% neq 0 (
echo Docker engine is not running.
exit /b 1
)
cd %~dp0
echo Building docker image...
docker-compose -f ../docker/docker-compose.yml build
if %errorlevel% neq 0 (
echo Building docker image failed.
exit /b 1
)
echo The image was built successfully.

27
scripts/build_image.sh Normal file
View File

@ -0,0 +1,27 @@
#!/bin/bash
export LC_ALL=C.UTF-8
export LANG=C.UTF-8
docker -v > /dev/null 2>&1
if [ $? -ne 0 ]; then
echo -e "\033[31mDocker is not installed.\033[0m"
exit 1
fi
docker info > /dev/null 2>&1
if [ $? -ne 0 ]; then
echo -e "\033[31mDocker engine is not running.\033[0m"
exit 1
fi
cd ../docker
echo -e "\033[32mBuilding docker image...\033[0m"
docker-compose build cat-detection
if [ $? -ne 0 ]; then
echo -e "\033[31mBuilding docker image failed.\033[0m"
exit 1
fi
echo -e "\033[32mThe image was built successfully.\033[0m"

12
scripts/run_tests.bat Normal file
View File

@ -0,0 +1,12 @@
@echo off
echo Running unit tests.
cd %~dp0
pytest ../tests
if %ERRORLEVEL% equ 0 (
echo Tests passed successfully.
) else (
Tests failed.
echo Tests failed.
)

9
scripts/start.bat Normal file
View File

@ -0,0 +1,9 @@
@echo off
chcp 65001 >nul
cd %~dp0
docker compose -f ../docker/docker-compose.yml up cat-detection -d
if %errorlevel% neq 0 (
echo Starting docker container failed.
exit /b 1
)

11
scripts/start.sh Normal file
View File

@ -0,0 +1,11 @@
#!/bin/bash
export LC_ALL=C.UTF-8
export LANG=C.UTF-8
docker-compose -f ../docker/docker-compose.yml up cat-detection -d
if [ $? -ne 0 ]; then
echo -e "\033[31mStarting docker container failed.\033[0m"
exit 1
fi

0
tests/__init__.py Normal file
View File

Binary file not shown.

After

Width:  |  Height:  |  Size: 360 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 100 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 159 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 180 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 216 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 326 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 221 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 281 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 469 KiB

View File

Before

Width:  |  Height:  |  Size: 7.1 KiB

After

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 255 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.7 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 345 KiB

View File

Before

Width:  |  Height:  |  Size: 105 KiB

After

Width:  |  Height:  |  Size: 105 KiB

19
tests/test_1.py Normal file
View File

@ -0,0 +1,19 @@
import os
from werkzeug.datastructures import FileStorage
from main import app
def test_upload_file():
with app.test_client() as test_client:
script_directory = os.path.dirname(os.path.abspath(__file__))
image_path = os.path.join(script_directory, "./img/tiger_cat/cat1.jpg")
image = FileStorage(
stream=open(image_path, "rb"),
filename="cat1.jpg",
content_type="image/jpeg",
)
response = test_client.post('/api/v1/detect-cat', data={'image': image}, content_type='multipart/form-data')
assert response.status_code == 200

31
validator.py Normal file
View File

@ -0,0 +1,31 @@
"""
Validation method.
If everything fine then returns empty list.
Else returns list of error messages.
"""
# Allowed extensions
allowed_extensions = {'jpg', 'jpeg', 'png'}
def validate(request):
errors = []
try:
images = request.files.getlist('image')
# Case 1 - > request has no 'Image' Key in body
if images is None:
raise KeyError("'Image' key not found in request.")
# Case 2 - > if some of the images has no filename
if not images or all(img.filename == '' for img in images):
raise ValueError("Value of 'Image' key is empty.")
# Case 3 -> if some of the images has wrong extension
for img in images:
if not img.filename.lower().endswith(('.png', '.jpg', '.jpeg')):
raise ValueError(f"Given file '{img.filename}' has no allowed extension. "
f"Allowed extensions: {allowed_extensions}.")
except Exception as e:
errors.append(e.args[0])
return errors