Compare commits

...

2 Commits

Author SHA1 Message Date
caf98c54cd Merge pull request 'Flask API' (#2) from flask-ML into dev
Reviewed-on: #2
2024-01-10 08:38:17 +01:00
Michael
bf70d8eb9c
Flask API 2024-01-04 21:07:52 +01:00
3 changed files with 86 additions and 50 deletions

48
cat_detection.py Normal file
View File

@ -0,0 +1,48 @@
from io import BytesIO
import torch
import torch.nn.functional as F
from PIL import Image
from torchvision.models.resnet import resnet50, ResNet50_Weights
from torchvision.transforms import transforms
model = resnet50(weights=ResNet50_Weights.DEFAULT)
model.eval()
# Define the image transformations
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def is_cat(image):
try:
img = Image.open(BytesIO(image.read()))
# Preprocess the image
img_t = preprocess(img)
batch_t = torch.unsqueeze(img_t, 0)
# Make the prediction
out = model(batch_t)
# Apply softmax to get probabilities
probabilities = F.softmax(out, dim=1)
# Get the maximum predicted class and its probability
max_prob, max_class = torch.max(probabilities, dim=1)
max_prob = max_prob.item()
max_class = max_class.item()
# Check if the maximum predicted class is within the range 281-285
if 281 <= max_class <= 285:
return max_class, max_prob
else:
return max_class, None
except Exception as e:
print("Error while processing the image:", e)
return None

9
docs.md Normal file
View File

@ -0,0 +1,9 @@
# Api
Port -> 5000
endpoint -> /detect-cat
Key -> 'Image'
Value -> {UPLOADED_FILE}

67
main.py
View File

@ -1,51 +1,24 @@
from PIL import Image from flask import Flask, request, jsonify, session
import torch
import torch.nn.functional as F
from torchvision.models.resnet import resnet50, ResNet50_Weights
from torchvision.transforms import transforms
# Load the pre-trained model from cat_detection import is_cat
model = resnet50(weights=ResNet50_Weights.DEFAULT)
model.eval() # Define flask app
app = Flask(__name__)
# Define the image transformations app.secret_key = 'secret_key'
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def is_cat(image_path): @app.route('/detect-cat', methods=['POST'])
# Open the image def upload_file():
img = Image.open(image_path) # 'Key' in body should be named as 'image'. Type should be 'File' and in 'Value' we should upload image from disc.
file = request.files['image']
if file.filename == '':
return jsonify({'error': "File name is empty. Please name a file."}), 400
max_class, max_prob = is_cat(file)
# Preprocess the image # Save result in session
img_t = preprocess(img) session['result'] = max_class, max_prob
batch_t = torch.unsqueeze(img_t, 0)
# Make the prediction # Tworzenie komunikatu na podstawie wyniku analizy zdjęcia
out = model(batch_t)
# Apply softmax to get probabilities
probabilities = F.softmax(out, dim=1)
# Get the maximum predicted class and its probability
max_prob, max_class = torch.max(probabilities, dim=1)
max_prob = max_prob.item()
max_class = max_class.item()
# Check if the maximum predicted class is within the range 281-285
if 281 <= max_class <= 285:
return max_class, max_prob
else:
return max_class, None
image_path = 'wolf.jpg'
max_class, max_prob = is_cat(image_path)
translator = { translator = {
281: "tabby cat", 281: "tabby cat",
282: "tiger cat", 282: "tiger cat",
@ -54,6 +27,12 @@ translator = {
285: "egyptian cat" 285: "egyptian cat"
} }
if max_prob is not None: if max_prob is not None:
print(f"The image is recognized as '{translator[max_class]}' with a probability of {round(max_prob * 100, 2)}%") result = f"The image is recognized as '{translator[max_class]}' with a probability of {round(max_prob * 100, 2)}%"
else: else:
print(f"The image is not recognized as a class within the range 281-285 ({max_class})") result = f"The image is not recognized as a class within the range 281-285 ({max_class})"
return jsonify({'result': result}), 200
if __name__ == '__main__':
app.run(debug=True)