Compare commits

..

No commits in common. "caf98c54cd71bdd32b29aa467ba296d5111290a7" and "68ce008dea3caab1e00c71e0f8fb7d49a21b0711" have entirely different histories.

3 changed files with 50 additions and 86 deletions

View File

@ -1,48 +0,0 @@
from io import BytesIO
import torch
import torch.nn.functional as F
from PIL import Image
from torchvision.models.resnet import resnet50, ResNet50_Weights
from torchvision.transforms import transforms
model = resnet50(weights=ResNet50_Weights.DEFAULT)
model.eval()
# Define the image transformations
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
def is_cat(image):
try:
img = Image.open(BytesIO(image.read()))
# Preprocess the image
img_t = preprocess(img)
batch_t = torch.unsqueeze(img_t, 0)
# Make the prediction
out = model(batch_t)
# Apply softmax to get probabilities
probabilities = F.softmax(out, dim=1)
# Get the maximum predicted class and its probability
max_prob, max_class = torch.max(probabilities, dim=1)
max_prob = max_prob.item()
max_class = max_class.item()
# Check if the maximum predicted class is within the range 281-285
if 281 <= max_class <= 285:
return max_class, max_prob
else:
return max_class, None
except Exception as e:
print("Error while processing the image:", e)
return None

View File

@ -1,9 +0,0 @@
# Api
Port -> 5000
endpoint -> /detect-cat
Key -> 'Image'
Value -> {UPLOADED_FILE}

75
main.py
View File

@ -1,38 +1,59 @@
from flask import Flask, request, jsonify, session from PIL import Image
import torch
import torch.nn.functional as F
from torchvision.models.resnet import resnet50, ResNet50_Weights
from torchvision.transforms import transforms
from cat_detection import is_cat # Load the pre-trained model
model = resnet50(weights=ResNet50_Weights.DEFAULT)
# Define flask app model.eval()
app = Flask(__name__)
app.secret_key = 'secret_key' # Define the image transformations
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
@app.route('/detect-cat', methods=['POST']) def is_cat(image_path):
def upload_file(): # Open the image
# 'Key' in body should be named as 'image'. Type should be 'File' and in 'Value' we should upload image from disc. img = Image.open(image_path)
file = request.files['image']
if file.filename == '':
return jsonify({'error': "File name is empty. Please name a file."}), 400
max_class, max_prob = is_cat(file)
# Save result in session # Preprocess the image
session['result'] = max_class, max_prob img_t = preprocess(img)
batch_t = torch.unsqueeze(img_t, 0)
# Tworzenie komunikatu na podstawie wyniku analizy zdjęcia # Make the prediction
translator = { out = model(batch_t)
# Apply softmax to get probabilities
probabilities = F.softmax(out, dim=1)
# Get the maximum predicted class and its probability
max_prob, max_class = torch.max(probabilities, dim=1)
max_prob = max_prob.item()
max_class = max_class.item()
# Check if the maximum predicted class is within the range 281-285
if 281 <= max_class <= 285:
return max_class, max_prob
else:
return max_class, None
image_path = 'wolf.jpg'
max_class, max_prob = is_cat(image_path)
translator = {
281: "tabby cat", 281: "tabby cat",
282: "tiger cat", 282: "tiger cat",
283: "persian cat", 283: "persian cat",
284: "siamese cat", 284: "siamese cat",
285: "egyptian cat" 285: "egyptian cat"
} }
if max_prob is not None: if max_prob is not None:
result = f"The image is recognized as '{translator[max_class]}' with a probability of {round(max_prob * 100, 2)}%" print(f"The image is recognized as '{translator[max_class]}' with a probability of {round(max_prob * 100, 2)}%")
else: else:
result = f"The image is not recognized as a class within the range 281-285 ({max_class})" print(f"The image is not recognized as a class within the range 281-285 ({max_class})")
return jsonify({'result': result}), 200
if __name__ == '__main__':
app.run(debug=True)