feat and fix
This commit is contained in:
parent
b5e69bcc97
commit
997564080e
88
app.py
88
app.py
@ -9,67 +9,76 @@ from classes.agent import Agent
|
||||
from collections import deque
|
||||
import threading
|
||||
import time
|
||||
import random
|
||||
|
||||
pygame.init()
|
||||
window = pygame.display.set_mode((prefs.WIDTH, prefs.HEIGHT))
|
||||
pygame.display.set_caption("Game Window")
|
||||
table_coords = [(4, 4), (4, prefs.GRID_SIZE-5), (prefs.GRID_SIZE-5, 4), (prefs.GRID_SIZE-5, prefs.GRID_SIZE-5)]
|
||||
|
||||
def initBoard():
|
||||
wall_probability = 0.001
|
||||
global cells
|
||||
cells = []
|
||||
for i in range(prefs.GRID_SIZE):
|
||||
row = []
|
||||
for j in range(prefs.GRID_SIZE):
|
||||
cell = Cell(i, j, 1)
|
||||
waga = random.choices([1, 4, 5], weights=[0.7, 0.1, 0.1], k=1)[0]
|
||||
cell = Cell(i, j, waga)
|
||||
|
||||
if (i, j) not in table_coords:
|
||||
if waga == 5:
|
||||
cell.prepareTexture("sprites/plama.png")
|
||||
|
||||
if waga == 4:
|
||||
cell.prepareTexture("sprites/dywan.png")
|
||||
|
||||
if random.random() < wall_probability:
|
||||
cell.prepareTexture("sprites/wall.png")
|
||||
cell.blocking_movement = True
|
||||
|
||||
# Wybierz kolor dla płytki na podstawie jej położenia
|
||||
if i == 0 or i == prefs.GRID_SIZE - 1 or j == 0 or j == prefs.GRID_SIZE - 1:
|
||||
color = (100, 20, 20)
|
||||
elif i == 1 or i == prefs.GRID_SIZE - 2 or j == 1 or j == prefs.GRID_SIZE - 2:
|
||||
color = (20, 100, 20)
|
||||
elif i == 2 or i == prefs.GRID_SIZE - 3 or j == 2 or j == prefs.GRID_SIZE - 3:
|
||||
color = (20, 20, 100)
|
||||
else:
|
||||
color = (150, 200, 200)
|
||||
cell.color = color
|
||||
row.append(cell)
|
||||
cells.append(row)
|
||||
|
||||
# Test
|
||||
# Na potrzeby prezentacji tworzę sobie prostokątne ściany na które nie da się wejść
|
||||
x1 = 3
|
||||
y1 = 6
|
||||
for i in range(x1, x1+4):
|
||||
for j in range(y1, y1+2):
|
||||
cells[i][j].prepareTexture("sprites/wall.png")
|
||||
cells[i][j].blocking_movement = True
|
||||
# x1 = 3
|
||||
# y1 = 6
|
||||
# for i in range(x1, x1+4):
|
||||
# for j in range(y1, y1+2):
|
||||
# cells[i][j].prepareTexture("sprites/wall.png")
|
||||
# cells[i][j].blocking_movement = True
|
||||
for i in range(prefs.GRID_SIZE):
|
||||
for j in range(prefs.GRID_SIZE):
|
||||
if i == 0 or j==0 or j==prefs.GRID_SIZE-1 or (i == prefs.GRID_SIZE-1 and j != 17):
|
||||
cells[i][j].prepareTexture("sprites/wall.png")
|
||||
cells[i][j].blocking_movement = True
|
||||
|
||||
cells[6][4].interactableItem = BeerKeg(cells[6][4], "Beer Keg")
|
||||
cells[6][6].interactableItem = BeerKeg(cells[6][6], "Beer Keg")
|
||||
cells[4][10].interactableItem = CoffeMachine(cells[4][10], "Coffe Machine")
|
||||
cells[9][10].interactableItem = Table(cells[9][10], "Table")
|
||||
cells[8][2].interactableItem = Table(cells[8][2], "Table")
|
||||
cells[6][2].interactableItem = Table(cells[6][2], "Table")
|
||||
cells[4][2].interactableItem = Table(cells[4][2], "Table")
|
||||
|
||||
for cell in cells:
|
||||
for cel in cell:
|
||||
cel.waga = Agent.get_cost((cel.X, cel.Y), cells)
|
||||
cells[4][4].interactableItem = Table(cells[4][4], "Table")
|
||||
cells[4][prefs.GRID_SIZE-5].interactableItem = Table(cells[4][prefs.GRID_SIZE-5], "Table")
|
||||
cells[prefs.GRID_SIZE-5][4].interactableItem = Table(cells[prefs.GRID_SIZE-5][4], "Table")
|
||||
cells[prefs.GRID_SIZE-5][prefs.GRID_SIZE-5].interactableItem = Table(cells[prefs.GRID_SIZE-5][prefs.GRID_SIZE-5], "Table")
|
||||
|
||||
cells[9][9].waga = 2
|
||||
cells[9][8].waga = 10
|
||||
cells[8][8].waga = 10
|
||||
cells[prefs.SPAWN_POINT[0]+1][prefs.SPAWN_POINT[1]].waga = 100
|
||||
cells[prefs.SPAWN_POINT[0]][prefs.SPAWN_POINT[1]-1].waga = 100
|
||||
|
||||
cells[9][7].waga = 2
|
||||
cells[10][6].waga = 2
|
||||
cells[7][7].waga = 2
|
||||
# cells[9][9].waga = 2
|
||||
# cells[9][8].waga = 10
|
||||
# cells[8][8].waga = 10
|
||||
# cells[prefs.SPAWN_POINT[0]+1][prefs.SPAWN_POINT[1]].waga = 100
|
||||
# cells[prefs.SPAWN_POINT[0]][prefs.SPAWN_POINT[1]-1].waga = 100
|
||||
|
||||
# cells[9][7].waga = 2
|
||||
# cells[10][6].waga = 2
|
||||
# cells[7][7].waga = 2
|
||||
|
||||
def draw_grid(window, cells, agent):
|
||||
for i in range(prefs.GRID_SIZE):
|
||||
for j in range(prefs.GRID_SIZE):
|
||||
cell = cells[i][j]
|
||||
color = cell.color
|
||||
pygame.draw.rect(window, cell.color, (i*prefs.CELL_SIZE, j*prefs.CELL_SIZE, prefs.CELL_SIZE, prefs.CELL_SIZE))
|
||||
cells[i][j].update(window)
|
||||
|
||||
if(cells[i][j].interactableItem):
|
||||
cells[i][j].interactableItem.update(window)
|
||||
if(not cells[i][j].blocking_movement):
|
||||
@ -84,7 +93,7 @@ def draw_grid(window, cells, agent):
|
||||
initBoard()
|
||||
agent = Agent(prefs.SPAWN_POINT[0], prefs.SPAWN_POINT[1], cells)
|
||||
|
||||
target_x, target_y = 9, 11
|
||||
target_x, target_y = 18, 18
|
||||
|
||||
def watekDlaSciezkiAgenta():
|
||||
time.sleep(3)
|
||||
@ -137,13 +146,6 @@ while running:
|
||||
watek.daemon = True
|
||||
watek.start()
|
||||
|
||||
if keys[K_g]:
|
||||
path, cost = agent.astar((target_x, target_y), start_cost=0)
|
||||
print("Shortest path:", path)
|
||||
print("Total cost:", cost)
|
||||
watek = threading.Thread(target=watekDlaSciezkiAgenta)
|
||||
watek.daemon = True
|
||||
watek.start()
|
||||
|
||||
|
||||
if pygame.key.get_pressed()[pygame.K_e]:
|
||||
|
@ -18,8 +18,8 @@ class Agent:
|
||||
self.multiplier = 1
|
||||
self.direction = 0
|
||||
self.directionPOM = 0
|
||||
self.xPOM = 5
|
||||
self.yPOM = 5
|
||||
self.xPOM = x
|
||||
self.yPOM = y
|
||||
self.g_scores = {}
|
||||
|
||||
self.textures = [
|
||||
@ -270,74 +270,12 @@ class Agent:
|
||||
|
||||
return []
|
||||
|
||||
#Algorytm astar
|
||||
def moveto(self,x,y):
|
||||
if pygame.time.get_ticks()-self.last_move_time > 125 and self.current_cell.X < prefs.GRID_SIZE-1 and not self.cells[x][y].blocking_movement:
|
||||
self.current_cell = self.cells[x][y]
|
||||
self.moved=True
|
||||
self.last_move_time=pygame.time.get_ticks()
|
||||
print("Agent moved to x,y: ",x,y)
|
||||
else:
|
||||
print("Agent cannot move to this direction")
|
||||
|
||||
def get_cost(cell, cells):
|
||||
x, y = cell[0], cell[1]
|
||||
if x == 0 or x == len(cells) - 1 or y == 0 or y == len(cells[0]) - 1:
|
||||
return 15 # Koszt dla pól na krawędziach
|
||||
elif x == 1 or x == len(cells) - 2 or y == 1 or y == len(cells[0]) - 2:
|
||||
return 10 # Koszt dla pól drugiego rzędu i przedostatniego oraz drugiej kolumny i przedostatniej
|
||||
elif x == 2 or x == len(cells) - 3 or y == 2 or y == len(cells[0]) - 3:
|
||||
return 5 # Koszt dla pól trzeciego rzędu i trzeciego od końca oraz trzeciej kolumny i trzeciej od końca
|
||||
else:
|
||||
return 1
|
||||
|
||||
def heuristic(self, current, target):
|
||||
# Manhattan distance heuristic
|
||||
dx = abs(current[0] - target[0])
|
||||
dy = abs(current[1] - target[1])
|
||||
return dx + dy
|
||||
|
||||
def priority(self, state, target):
|
||||
# Oblicza priorytet dla danego stanu
|
||||
g_score = self.g_score[state]
|
||||
h_score = self.heuristic(state, target)
|
||||
return g_score + h_score
|
||||
|
||||
def astar(self, target, start_cost=0):
|
||||
if not isinstance(target, tuple) or len(target) != 2:
|
||||
raise ValueError("Target must be a tuple of two elements (x, y).")
|
||||
|
||||
open_list = [(start_cost, (self.current_cell.X, self.current_cell.Y, self.directionPOM))]
|
||||
came_from = {}
|
||||
g_score = {(self.current_cell.X, self.current_cell.Y, self.directionPOM): start_cost}
|
||||
|
||||
while open_list:
|
||||
_, current = heapq.heappop(open_list)
|
||||
if isinstance(current, int):
|
||||
raise ValueError("Current must be a tuple of three elements (x, y, direction).")
|
||||
|
||||
x, y, _ = current # Unpack the current tuple
|
||||
if (x, y) == target: # Check if the current cell's coordinates match the target
|
||||
path = []
|
||||
while current in came_from:
|
||||
path.append((current[0], current[1])) # Append only coordinates (x, y) to the path
|
||||
current = came_from[current]
|
||||
path = path[::-1] # Reverse the path
|
||||
cost = g_score[(x, y, self.directionPOM)] # Retrieve the cost from the g_score dictionary
|
||||
return path, cost
|
||||
|
||||
for neighbor in self.get_neighbors(self.cells[x][y], self.cells):
|
||||
neighbor_coords = (neighbor.X, neighbor.Y, self.directionPOM) # Convert neighbor cell to tuple
|
||||
tentative_g_score = g_score[current] + self.get_cost(neighbor_coords)
|
||||
if tentative_g_score < g_score.get(neighbor_coords, float('inf')):
|
||||
came_from[neighbor_coords] = current
|
||||
g_score[neighbor_coords] = tentative_g_score
|
||||
f_score = tentative_g_score + self.heuristic(neighbor_coords, target)
|
||||
heapq.heappush(open_list, (f_score, neighbor_coords))
|
||||
|
||||
|
||||
return [], float('inf')
|
||||
|
||||
|
||||
|
||||
|
||||
|
33
decision_tree
Normal file
33
decision_tree
Normal file
@ -0,0 +1,33 @@
|
||||
digraph Tree {
|
||||
node [shape=box, style="filled, rounded", color="black", fontname="helvetica"] ;
|
||||
edge [fontname="helvetica"] ;
|
||||
0 [label=<Tattoo ≤ 1.5<br/>entropy = 1.045<br/>samples = 135<br/>value = [39.0, 1.0, 1.0, 93.0, 1.0]<br/>class = No >, fillcolor="#9190f0"] ;
|
||||
1 [label=<Hair ≤ 1.5<br/>entropy = 1.185<br/>samples = 66<br/>value = [28, 0, 1, 36, 1]<br/>class = No >, fillcolor="#d6d5fa"] ;
|
||||
0 -> 1 [labeldistance=2.5, labelangle=45, headlabel="True"] ;
|
||||
2 [label=<Balding ≤ 1.5<br/>entropy = 0.678<br/>samples = 23<br/>value = [2, 0, 0, 20, 1]<br/>class = No >, fillcolor="#5855e9"] ;
|
||||
1 -> 2 ;
|
||||
3 [label=<entropy = 0.0<br/>samples = 13<br/>value = [0, 0, 0, 13, 0]<br/>class = No >, fillcolor="#3c39e5"] ;
|
||||
2 -> 3 ;
|
||||
4 [label=<entropy = 1.157<br/>samples = 10<br/>value = [2, 0, 0, 7, 1]<br/>class = No >, fillcolor="#8583ef"] ;
|
||||
2 -> 4 ;
|
||||
5 [label=<Wrinkles ≤ 1.5<br/>entropy = 1.096<br/>samples = 43<br/>value = [26, 0, 1, 16, 0]<br/>class = Yes>, fillcolor="#f5d0b6"] ;
|
||||
1 -> 5 ;
|
||||
6 [label=<entropy = 0.976<br/>samples = 22<br/>value = [9, 0, 0, 13, 0]<br/>class = No >, fillcolor="#c3c2f7"] ;
|
||||
5 -> 6 ;
|
||||
7 [label=<entropy = 0.857<br/>samples = 21<br/>value = [17, 0, 1, 3, 0]<br/>class = Yes>, fillcolor="#eb9d65"] ;
|
||||
5 -> 7 ;
|
||||
8 [label=<Balding ≤ 1.5<br/>entropy = 0.739<br/>samples = 69<br/>value = [11.0, 1.0, 0.0, 57.0, 0.0]<br/>class = No >, fillcolor="#6462ea"] ;
|
||||
0 -> 8 [labeldistance=2.5, labelangle=-45, headlabel="False"] ;
|
||||
9 [label=<Glasses ≤ 1.5<br/>entropy = 0.323<br/>samples = 34<br/>value = [2, 0, 0, 32, 0]<br/>class = No >, fillcolor="#4845e7"] ;
|
||||
8 -> 9 ;
|
||||
10 [label=<entropy = 0.567<br/>samples = 15<br/>value = [2, 0, 0, 13, 0]<br/>class = No >, fillcolor="#5a57e9"] ;
|
||||
9 -> 10 ;
|
||||
11 [label=<entropy = 0.0<br/>samples = 19<br/>value = [0, 0, 0, 19, 0]<br/>class = No >, fillcolor="#3c39e5"] ;
|
||||
9 -> 11 ;
|
||||
12 [label=<Outfit ≤ 1.5<br/>entropy = 0.997<br/>samples = 35<br/>value = [9, 1, 0, 25, 0]<br/>class = No >, fillcolor="#8785ef"] ;
|
||||
8 -> 12 ;
|
||||
13 [label=<entropy = 1.272<br/>samples = 16<br/>value = [7, 1, 0, 8, 0]<br/>class = No >, fillcolor="#e9e9fc"] ;
|
||||
12 -> 13 ;
|
||||
14 [label=<entropy = 0.485<br/>samples = 19<br/>value = [2, 0, 0, 17, 0]<br/>class = No >, fillcolor="#5350e8"] ;
|
||||
12 -> 14 ;
|
||||
}
|
@ -72,5 +72,5 @@ print("\nNew client:")
|
||||
print(new_client_df)
|
||||
print("Prediction:", prediction[0])
|
||||
|
||||
graph = graphviz.Source(dot_data)
|
||||
graph.render("decision_tree", format='png')
|
||||
#graph = graphviz.Source(dot_data)
|
||||
#graph.render("decision_tree", format='png')
|
||||
|
6
prefs.py
6
prefs.py
@ -1,9 +1,9 @@
|
||||
WIDTH = 600
|
||||
WIDTH = 1000
|
||||
HEIGHT = WIDTH
|
||||
GRID_SIZE = 12
|
||||
GRID_SIZE = 20
|
||||
CELL_SIZE = WIDTH // GRID_SIZE
|
||||
SPAWN_POINT = (5, 5)
|
||||
COLORS = [(100, 20, 20), (20, 100, 20), (20, 20, 100),(150, 200, 200)]
|
||||
COLORS = [(190, 190, 190),(180,180,180)]
|
||||
|
||||
|
||||
|
||||
|
BIN
sprites/dywan.png
Normal file
BIN
sprites/dywan.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 4.2 KiB |
BIN
sprites/plama.png
Normal file
BIN
sprites/plama.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 2.2 KiB |
Loading…
Reference in New Issue
Block a user