add: astar in agent.py
This commit is contained in:
parent
d7c3f50322
commit
d130f2360b
23
app.py
23
app.py
@ -9,7 +9,6 @@ from classes.agent import Agent
|
|||||||
from collections import deque
|
from collections import deque
|
||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
from astar import AStar
|
|
||||||
|
|
||||||
pygame.init()
|
pygame.init()
|
||||||
window = pygame.display.set_mode((prefs.WIDTH, prefs.HEIGHT))
|
window = pygame.display.set_mode((prefs.WIDTH, prefs.HEIGHT))
|
||||||
@ -22,6 +21,16 @@ def initBoard():
|
|||||||
row = []
|
row = []
|
||||||
for j in range(prefs.GRID_SIZE):
|
for j in range(prefs.GRID_SIZE):
|
||||||
cell = Cell(i, j, 1)
|
cell = Cell(i, j, 1)
|
||||||
|
# Wybierz kolor dla płytki na podstawie jej położenia
|
||||||
|
if i == 0 or i == prefs.GRID_SIZE - 1 or j == 0 or j == prefs.GRID_SIZE - 1:
|
||||||
|
color = (100, 20, 20)
|
||||||
|
elif i == 1 or i == prefs.GRID_SIZE - 2 or j == 1 or j == prefs.GRID_SIZE - 2:
|
||||||
|
color = (20, 100, 20)
|
||||||
|
elif i == 2 or i == prefs.GRID_SIZE - 3 or j == 2 or j == prefs.GRID_SIZE - 3:
|
||||||
|
color = (20, 20, 100)
|
||||||
|
else:
|
||||||
|
color = (150, 200, 200)
|
||||||
|
cell.color = color
|
||||||
row.append(cell)
|
row.append(cell)
|
||||||
cells.append(row)
|
cells.append(row)
|
||||||
|
|
||||||
@ -50,7 +59,9 @@ def initBoard():
|
|||||||
def draw_grid(window, cells, agent):
|
def draw_grid(window, cells, agent):
|
||||||
for i in range(prefs.GRID_SIZE):
|
for i in range(prefs.GRID_SIZE):
|
||||||
for j in range(prefs.GRID_SIZE):
|
for j in range(prefs.GRID_SIZE):
|
||||||
cells[i][j].update(window)
|
cell = cells[i][j]
|
||||||
|
color = cell.color
|
||||||
|
pygame.draw.rect(window, cell.color, (i*prefs.CELL_SIZE, j*prefs.CELL_SIZE, prefs.CELL_SIZE, prefs.CELL_SIZE))
|
||||||
if(cells[i][j].interactableItem):
|
if(cells[i][j].interactableItem):
|
||||||
cells[i][j].interactableItem.update(window)
|
cells[i][j].interactableItem.update(window)
|
||||||
cells[i][j].blit_text(cells[i][j].waga, i*50+6, j*52+6, 12,window)
|
cells[i][j].blit_text(cells[i][j].waga, i*50+6, j*52+6, 12,window)
|
||||||
@ -115,8 +126,14 @@ while running:
|
|||||||
watek.start()
|
watek.start()
|
||||||
|
|
||||||
if keys[K_g]:
|
if keys[K_g]:
|
||||||
path = AStar(cells).astar((agent.current_cell.X, agent.current_cell.Y), (target_x, target_y))
|
path, cost = agent.astar((target_x, target_y), start_cost=0)
|
||||||
print("Shortest path:", path)
|
print("Shortest path:", path)
|
||||||
|
print("Total cost:", cost)
|
||||||
|
watek = threading.Thread(target=watekDlaSciezkiAgenta)
|
||||||
|
watek.daemon = True
|
||||||
|
watek.start()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if pygame.key.get_pressed()[pygame.K_e]:
|
if pygame.key.get_pressed()[pygame.K_e]:
|
||||||
if agent.current_cell.interactableItem and pygame.time.get_ticks() - agent.last_interact_time > 500:
|
if agent.current_cell.interactableItem and pygame.time.get_ticks() - agent.last_interact_time > 500:
|
||||||
|
49
astar.py
49
astar.py
@ -1,49 +0,0 @@
|
|||||||
from collections import deque
|
|
||||||
import heapq
|
|
||||||
|
|
||||||
class AStar:
|
|
||||||
def __init__(self, cells):
|
|
||||||
self.cells = cells
|
|
||||||
|
|
||||||
def heuristic(self, current, target):
|
|
||||||
# Euclidean distance heuristic
|
|
||||||
dx = abs(current[0] - target[0])
|
|
||||||
dy = abs(current[1] - target[1])
|
|
||||||
return dx + dy
|
|
||||||
|
|
||||||
def get_neighbors(self, cell):
|
|
||||||
neighbors = []
|
|
||||||
x, y = cell[0], cell[1]
|
|
||||||
if x > 0 and not self.cells[x - 1][y].blocking_movement:
|
|
||||||
neighbors.append((x - 1, y))
|
|
||||||
if x < len(self.cells) - 1 and not self.cells[x + 1][y].blocking_movement:
|
|
||||||
neighbors.append((x + 1, y))
|
|
||||||
if y > 0 and not self.cells[x][y - 1].blocking_movement:
|
|
||||||
neighbors.append((x, y - 1))
|
|
||||||
if y < len(self.cells[x]) - 1 and not self.cells[x][y + 1].blocking_movement:
|
|
||||||
neighbors.append((x, y + 1))
|
|
||||||
return neighbors
|
|
||||||
|
|
||||||
def astar(self, start, target):
|
|
||||||
open_list = [(0, start)]
|
|
||||||
came_from = {}
|
|
||||||
g_score = {start: 0}
|
|
||||||
|
|
||||||
while open_list:
|
|
||||||
_, current = heapq.heappop(open_list)
|
|
||||||
if current == target:
|
|
||||||
path = []
|
|
||||||
while current in came_from:
|
|
||||||
path.append(current)
|
|
||||||
current = came_from[current]
|
|
||||||
return path[::-1]
|
|
||||||
|
|
||||||
for neighbor in self.get_neighbors(current):
|
|
||||||
tentative_g_score = g_score[current] + 1
|
|
||||||
if tentative_g_score < g_score.get(neighbor, float('inf')):
|
|
||||||
came_from[neighbor] = current
|
|
||||||
g_score[neighbor] = tentative_g_score
|
|
||||||
f_score = tentative_g_score + self.heuristic(neighbor, target)
|
|
||||||
heapq.heappush(open_list, (f_score, neighbor))
|
|
||||||
|
|
||||||
return []
|
|
@ -1,6 +1,9 @@
|
|||||||
import pygame
|
import pygame
|
||||||
from collections import deque
|
from collections import deque
|
||||||
|
from classes.cell import Cell
|
||||||
import prefs
|
import prefs
|
||||||
|
import heapq
|
||||||
|
|
||||||
class Agent:
|
class Agent:
|
||||||
def __init__(self, x, y, cells, baseScore=0):
|
def __init__(self, x, y, cells, baseScore=0):
|
||||||
self.sprite = pygame.image.load("sprites/BartenderNew64.png").convert_alpha()
|
self.sprite = pygame.image.load("sprites/BartenderNew64.png").convert_alpha()
|
||||||
@ -255,10 +258,75 @@ class Agent:
|
|||||||
new_state = (new_x, new_y, new_direction)
|
new_state = (new_x, new_y, new_direction)
|
||||||
queue.append((new_state, new_actions))
|
queue.append((new_state, new_actions))
|
||||||
#print(new_state, " ", new_actions)
|
#print(new_state, " ", new_actions)
|
||||||
|
|
||||||
return []
|
return []
|
||||||
|
|
||||||
|
#Algorytm astar
|
||||||
|
def get_cost(self, cell):
|
||||||
|
x, y = cell[0], cell[1]
|
||||||
|
if x == 0 or x == len(self.cells) - 1 or y == 0 or y == len(self.cells[0]) - 1:
|
||||||
|
return 15 # Koszt dla pól na krawędziach
|
||||||
|
elif x == 1 or x == len(self.cells) - 2 or y == 1 or y == len(self.cells[0]) - 2:
|
||||||
|
return 10 # Koszt dla pól drugiego rzędu i przedostatniego oraz drugiej kolumny i przedostatniej
|
||||||
|
elif x == 2 or x == len(self.cells) - 3 or y == 2 or y == len(self.cells[0]) - 3:
|
||||||
|
return 5 # Koszt dla pól trzeciego rzędu i trzeciego od końca oraz trzeciej kolumny i trzeciej od końca
|
||||||
|
else:
|
||||||
|
return 1
|
||||||
|
|
||||||
|
def heuristic(self, current, target):
|
||||||
|
# Manhattan distance heuristic
|
||||||
|
dx = abs(current[0] - target[0])
|
||||||
|
dy = abs(current[1] - target[1])
|
||||||
|
return dx + dy
|
||||||
|
|
||||||
|
def priority(self, state, target):
|
||||||
|
# Oblicza priorytet dla danego stanu
|
||||||
|
g_score = self.g_score[state]
|
||||||
|
h_score = self.heuristic(state, target)
|
||||||
|
return g_score + h_score
|
||||||
|
|
||||||
|
def astar(self, target, start_cost=0):
|
||||||
|
if not isinstance(target, tuple) or len(target) != 2:
|
||||||
|
raise ValueError("Target must be a tuple of two elements (x, y).")
|
||||||
|
|
||||||
|
open_list = [(start_cost, (self.current_cell.X, self.current_cell.Y, self.directionPOM))]
|
||||||
|
came_from = {}
|
||||||
|
g_score = {(self.current_cell.X, self.current_cell.Y, self.directionPOM): start_cost}
|
||||||
|
|
||||||
|
while open_list:
|
||||||
|
_, current = heapq.heappop(open_list)
|
||||||
|
if isinstance(current, int):
|
||||||
|
raise ValueError("Current must be a tuple of three elements (x, y, direction).")
|
||||||
|
|
||||||
|
x, y, _ = current # Unpack the current tuple
|
||||||
|
if (x, y) == target: # Check if the current cell's coordinates match the target
|
||||||
|
path = []
|
||||||
|
while current in came_from:
|
||||||
|
path.append((current[0], current[1])) # Append only coordinates (x, y) to the path
|
||||||
|
current = came_from[current]
|
||||||
|
path = path[::-1] # Reverse the path
|
||||||
|
cost = g_score[(x, y, self.directionPOM)] # Retrieve the cost from the g_score dictionary
|
||||||
|
return path, cost
|
||||||
|
|
||||||
|
for neighbor in self.get_neighbors(self.cells[x][y], self.cells):
|
||||||
|
neighbor_coords = (neighbor.X, neighbor.Y, self.directionPOM) # Convert neighbor cell to tuple
|
||||||
|
tentative_g_score = g_score[current] + self.get_cost(neighbor_coords)
|
||||||
|
if tentative_g_score < g_score.get(neighbor_coords, float('inf')):
|
||||||
|
came_from[neighbor_coords] = current
|
||||||
|
g_score[neighbor_coords] = tentative_g_score
|
||||||
|
f_score = tentative_g_score + self.heuristic(neighbor_coords, target)
|
||||||
|
heapq.heappush(open_list, (f_score, neighbor_coords))
|
||||||
|
|
||||||
|
|
||||||
|
return [], float('inf') # If no path found, return an empty path and infinite cost
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user