2024-06-17 04:58:21 +02:00
|
|
|
import pygame
|
|
|
|
import sys
|
|
|
|
from collections import deque
|
|
|
|
import heapq
|
|
|
|
import torch
|
|
|
|
import classes
|
|
|
|
from classes import *
|
|
|
|
import numpy as np
|
|
|
|
import pandas as pd
|
|
|
|
import torchvision.transforms as transforms
|
|
|
|
from PIL import Image
|
|
|
|
|
|
|
|
class Node():
|
|
|
|
def __init__(self,position,rotation,action,parent,cost):
|
|
|
|
self.position=position
|
|
|
|
self.rotation=rotation
|
|
|
|
self.action=action
|
|
|
|
self.parent=parent
|
|
|
|
self.cost=cost
|
|
|
|
|
|
|
|
def __lt__(self, other):
|
|
|
|
return (self.cost < other.cost)
|
|
|
|
def __le__(self, other):
|
|
|
|
return (self.cost <= other.cost)
|
|
|
|
|
|
|
|
# Initialize Pygame
|
|
|
|
pygame.init()
|
|
|
|
|
|
|
|
# Constants
|
|
|
|
TILE_SIZE = 49 # Size of a square tile in pixels
|
|
|
|
GRID_WIDTH, GRID_HEIGHT = 16,16 # Grid dimensions
|
|
|
|
SCREEN_WIDTH, SCREEN_HEIGHT = GRID_WIDTH * TILE_SIZE, GRID_HEIGHT * TILE_SIZE
|
|
|
|
FPS = 60 # Frames per second
|
|
|
|
|
|
|
|
# Setup display
|
|
|
|
screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
|
|
|
|
pygame.display.set_caption('Forklift Game')
|
|
|
|
|
|
|
|
# Clock
|
|
|
|
clock = pygame.time.Clock()
|
|
|
|
|
|
|
|
# Function to load and scale images
|
|
|
|
def load_image(name, scale=None):
|
|
|
|
"""Loads an image and optionally scales it."""
|
|
|
|
image = pygame.image.load(name).convert_alpha()
|
|
|
|
if scale:
|
|
|
|
image = pygame.transform.scale(image, scale)
|
|
|
|
return image
|
|
|
|
|
|
|
|
# Placeholder for images (will be loaded after video mode set)
|
|
|
|
forklift_image_full = None
|
|
|
|
freight_images_full = None
|
|
|
|
|
|
|
|
# Game variables
|
|
|
|
forklift_pos = [0, 0]
|
|
|
|
rotation='N'# Adjusted starting position of the forklift
|
|
|
|
carrying_freight = False
|
|
|
|
carried_freight = None
|
|
|
|
current_freight= set()
|
|
|
|
freight_content = []
|
|
|
|
freight_positions= {}# Dictionary to keep track of freight positions and types
|
|
|
|
|
|
|
|
|
|
|
|
tile_cost={}
|
|
|
|
tile_cost[(8,0)]=10
|
|
|
|
tile_cost[(7,1)]=10
|
|
|
|
tile_cost[(6,1)]=3
|
|
|
|
tile_cost[(5,0)]=10
|
|
|
|
|
|
|
|
model=torch.jit.load('./siec/model.pt')
|
|
|
|
model.eval()
|
|
|
|
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
model.to(device)
|
|
|
|
transform = transforms.Compose([
|
|
|
|
transforms.Resize((128, 128)),
|
|
|
|
transforms.ToTensor()
|
|
|
|
])
|
|
|
|
# Load images
|
|
|
|
def load_images():
|
|
|
|
global forklift_image_full, freight_images_full
|
|
|
|
global rotation
|
|
|
|
if rotation=='E':
|
|
|
|
forklift_image_full = load_image('forkliftE.png', (TILE_SIZE, TILE_SIZE))
|
|
|
|
elif rotation=='W':
|
|
|
|
forklift_image_full = load_image('forkliftW.png', (TILE_SIZE, TILE_SIZE))
|
|
|
|
elif rotation=='N':
|
|
|
|
forklift_image_full = load_image('forkliftS.png', (TILE_SIZE, TILE_SIZE))
|
|
|
|
elif rotation=='S':
|
|
|
|
forklift_image_full = load_image('forkliftN.png', (TILE_SIZE, TILE_SIZE))
|
|
|
|
#forklift_image_full = load_image('forklift.png', (TILE_SIZE, TILE_SIZE))
|
|
|
|
|
|
|
|
# Initialize or reset game elements
|
|
|
|
def init_game():
|
|
|
|
freight_positions.clear() # Ensure images are loaded after video mode set
|
|
|
|
reset_truck_bed_freight()
|
|
|
|
draw_freight()
|
|
|
|
load_images()
|
|
|
|
|
|
|
|
# Reset freight on the truck bed
|
|
|
|
def reset_truck_bed_freight():
|
|
|
|
global current_freight
|
|
|
|
for x in range(12, 16):
|
|
|
|
height=random.choice(['small','medium','big'])
|
|
|
|
width = random.choice(['small', 'medium', 'big'])
|
|
|
|
depth = random.choice(['small', 'medium', 'big'])
|
|
|
|
weight=random.choice(['light','medium','medium-heavy','heavy'])
|
|
|
|
damage = random.choice(['yes','no'])
|
|
|
|
label_state = random.choice(['yes', 'no'])
|
|
|
|
content=random.choice(['fruits','clothes','car_parts','nuclear_waste'])
|
|
|
|
value=random.choice(['cheap','expensive'])
|
|
|
|
position=[x,0]
|
|
|
|
cargo=classes.Cargo(height,width,depth,weight,damage,label_state,content,value,position)
|
|
|
|
cargo.contentSplit()
|
|
|
|
current_freight.add((x,0))
|
|
|
|
freight_content.append(cargo)
|
|
|
|
freight_positions[(x,0)]=cargo
|
|
|
|
|
|
|
|
# Drawing functions
|
|
|
|
def draw_board():
|
|
|
|
screen.fill((255, 255, 255))
|
|
|
|
for x in range(GRID_WIDTH):
|
|
|
|
for y in range(GRID_HEIGHT):
|
|
|
|
pygame.draw.rect(screen, (0, 0, 0), pygame.Rect(x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE), 1)
|
|
|
|
|
|
|
|
def draw_truck_bed_and_racks():
|
|
|
|
for y in range(10, 16):
|
|
|
|
for x in range(0,6):
|
|
|
|
pygame.draw.rect(screen, (165, 42, 42), (x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE))
|
|
|
|
for y in range(4, 10):
|
|
|
|
for x in range(0,6):
|
|
|
|
pygame.draw.rect(screen, (255, 0, 255), (x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE))
|
|
|
|
for y in range(10, 16):
|
|
|
|
for x in range(10,16):
|
|
|
|
pygame.draw.rect(screen, (191, 255, 0), (x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE))
|
|
|
|
for y in range(4, 10):
|
|
|
|
for x in range(10,16):
|
|
|
|
pygame.draw.rect(screen, (0, 255, 255), (x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE))
|
|
|
|
for key in tile_cost:
|
|
|
|
x=key[0]
|
|
|
|
y=key[1]
|
|
|
|
pygame.draw.rect(screen, (10*tile_cost[key], 130, 100), (x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE))
|
|
|
|
|
|
|
|
|
|
|
|
def draw_forklift_and_freight():
|
|
|
|
x, y = forklift_pos
|
|
|
|
if carrying_freight:
|
|
|
|
# Draw smaller images when carrying freight
|
|
|
|
small_size = (TILE_SIZE // 2, TILE_SIZE // 2)
|
|
|
|
forklift_small = pygame.transform.scale(forklift_image_full, small_size)
|
|
|
|
freight_small = pygame.transform.scale(load_image(carried_freight.image,(TILE_SIZE,TILE_SIZE)), small_size)
|
|
|
|
screen.blit(forklift_small, (x * TILE_SIZE, y * TILE_SIZE + TILE_SIZE // 2))
|
|
|
|
screen.blit(freight_small, (x * TILE_SIZE + TILE_SIZE // 2, y * TILE_SIZE))
|
|
|
|
else:
|
|
|
|
screen.blit(forklift_image_full, (x * TILE_SIZE, y * TILE_SIZE))
|
|
|
|
|
|
|
|
def draw_freight():
|
|
|
|
for key in freight_positions.keys():
|
|
|
|
screen.blit(load_image(freight_positions[key].image,(TILE_SIZE,TILE_SIZE)), (key[0] * TILE_SIZE, key[1] * TILE_SIZE))
|
|
|
|
#for item in freight_positions:
|
|
|
|
#screen.blit(load_image(item.image,(TILE_SIZE,TILE_SIZE)),(item.position[0]*TILE_SIZE,item.position[1]*TILE_SIZE))
|
|
|
|
|
|
|
|
# Game mechanics
|
|
|
|
def move_forklift():
|
|
|
|
global forklift_pos
|
|
|
|
if(rotation=='E'):
|
|
|
|
new_pos=[forklift_pos[0]+1,forklift_pos[1]]
|
|
|
|
elif(rotation=='W'):
|
|
|
|
new_pos=[forklift_pos[0]-1,forklift_pos[1]]
|
|
|
|
elif(rotation=='N'):
|
|
|
|
new_pos=[forklift_pos[0],forklift_pos[1]-1]
|
|
|
|
elif (rotation == 'S'):
|
|
|
|
new_pos = [forklift_pos[0], forklift_pos[1] + 1]
|
|
|
|
#new_pos = [forklift_pos[0] + dx, forklift_pos[1] + dy]
|
|
|
|
if 0 <= new_pos[0] < GRID_WIDTH and 0 <= new_pos[1] < GRID_HEIGHT:
|
|
|
|
forklift_pos = new_pos
|
|
|
|
def rotate_forklift(x):
|
|
|
|
global rotation
|
|
|
|
rot=['N','E','S','W']
|
|
|
|
rots=rot.index(rotation)
|
|
|
|
if x=='L':
|
|
|
|
if rots==0:
|
|
|
|
x=rot[3]
|
|
|
|
else:
|
|
|
|
x=rot[rots-1]
|
|
|
|
|
|
|
|
elif x=='R':
|
|
|
|
if rots==3:
|
|
|
|
x=rot[0]
|
|
|
|
else:
|
|
|
|
x=rot[rots+1]
|
|
|
|
rotation=x
|
|
|
|
|
|
|
|
free_lime={(x,y) for x in range(10,16) for y in range(10,16)}
|
|
|
|
free_cyan={(x,y) for x in range(10,16) for y in range(4,10)}
|
|
|
|
free_pink={(x,y) for x in range(0,6) for y in range(4,10)}
|
|
|
|
free_red={(x,y) for x in range(0,6) for y in range(10,16)}
|
|
|
|
def handle_freight():
|
|
|
|
global carrying_freight, carried_freight, freight_positions
|
|
|
|
pos_tuple = tuple(forklift_pos)
|
|
|
|
if carrying_freight:
|
|
|
|
if pos_tuple not in freight_positions:
|
|
|
|
freight_positions[pos_tuple] = carried_freight
|
|
|
|
carrying_freight = False
|
|
|
|
carried_freight = None
|
|
|
|
'''if pos_tuple in free_lime:
|
|
|
|
free_lime.remove(pos_tuple)
|
|
|
|
elif pos_tuple in free_red:
|
|
|
|
free_red.remove(pos_tuple)
|
|
|
|
elif pos_tuple in free_cyan:
|
|
|
|
free_cyan.remove(pos_tuple)
|
|
|
|
elif pos_tuple in free_pink:
|
|
|
|
free_pink.remove(pos_tuple)'''
|
|
|
|
else:
|
|
|
|
if pos_tuple in freight_positions:
|
|
|
|
carried_freight=freight_positions.pop(pos_tuple)
|
|
|
|
carrying_freight = True
|
|
|
|
#current_freight.discard(pos_tuple)
|
|
|
|
|
|
|
|
#searching for successors
|
|
|
|
def succ(current_node):
|
|
|
|
current_rotation=current_node.rotation
|
|
|
|
x=current_node.position[0]
|
|
|
|
y=current_node.position[1]
|
|
|
|
current_cost=tile_cost.get((x,y),1)
|
|
|
|
successors=[]
|
|
|
|
if(current_rotation=="N"):
|
|
|
|
if(y>0):
|
|
|
|
pos=[]
|
|
|
|
pos.append(x)
|
|
|
|
|
|
|
|
pos.append(y-1)
|
|
|
|
action='FW'
|
|
|
|
successor=Node(pos,current_rotation,action,current_node,current_cost)
|
|
|
|
successors.append(successor)
|
|
|
|
if(x>0):
|
|
|
|
pos = []
|
|
|
|
pos.append(x)
|
|
|
|
pos.append(y)
|
|
|
|
new_rotation='W'
|
|
|
|
action='L'
|
|
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
|
|
successors.append(successor)
|
|
|
|
if(x<15):
|
|
|
|
pos = []
|
|
|
|
pos.append(x)
|
|
|
|
pos.append(y)
|
|
|
|
new_rotation='E'
|
|
|
|
action='R'
|
|
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
|
|
successors.append(successor)
|
|
|
|
|
|
|
|
|
|
|
|
elif (current_rotation == "S"):
|
|
|
|
if (y < 15):
|
|
|
|
pos = []
|
|
|
|
pos.append(x)
|
|
|
|
pos.append(y + 1)
|
|
|
|
action = 'FW'
|
|
|
|
successor = Node(pos, current_rotation,action,current_node,current_cost)
|
|
|
|
successors.append(successor)
|
|
|
|
if (x <15):
|
|
|
|
pos = []
|
|
|
|
pos.append(x)
|
|
|
|
pos.append(y)
|
|
|
|
new_rotation = 'E'
|
|
|
|
action='L'
|
|
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
|
|
successors.append(successor)
|
|
|
|
if (x > 0):
|
|
|
|
pos = []
|
|
|
|
pos.append(x)
|
|
|
|
pos.append(y)
|
|
|
|
new_rotation = 'W'
|
|
|
|
action = 'R'
|
|
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
|
|
successors.append(successor)
|
|
|
|
|
|
|
|
elif (current_rotation == "E"):
|
|
|
|
if (x <15):
|
|
|
|
pos = []
|
|
|
|
pos.append(x+1)
|
|
|
|
pos.append(y)
|
|
|
|
action = 'FW'
|
|
|
|
successor = Node(pos, current_rotation,action,current_node,current_cost)
|
|
|
|
successors.append(successor)
|
|
|
|
if (y <15):
|
|
|
|
pos = []
|
|
|
|
pos.append(x)
|
|
|
|
pos.append(y)
|
|
|
|
new_rotation = 'S'
|
|
|
|
action='R'
|
|
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
|
|
successors.append(successor)
|
|
|
|
if (y >0):
|
|
|
|
pos = []
|
|
|
|
pos.append(x)
|
|
|
|
pos.append(y)
|
|
|
|
new_rotation = 'N'
|
|
|
|
action = 'L'
|
|
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
|
|
successors.append(successor)
|
|
|
|
|
|
|
|
elif (current_rotation == "W"):
|
|
|
|
if (x > 0):
|
|
|
|
pos = []
|
|
|
|
pos.append(x-1)
|
|
|
|
pos.append(y)
|
|
|
|
action = 'FW'
|
|
|
|
successor = Node(pos, current_rotation,action,current_node,current_cost)
|
|
|
|
successors.append(successor)
|
|
|
|
if (y >0):
|
|
|
|
pos = []
|
|
|
|
pos.append(x)
|
|
|
|
pos.append(y)
|
|
|
|
new_rotation = 'N'
|
|
|
|
action='R'
|
|
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
|
|
successors.append(successor)
|
|
|
|
if (y <15):
|
|
|
|
pos = []
|
|
|
|
pos.append(x)
|
|
|
|
pos.append(y)
|
|
|
|
new_rotation = 'S'
|
|
|
|
action = 'L'
|
|
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
|
|
successors.append(successor)
|
|
|
|
|
|
|
|
return successors
|
|
|
|
def preprocess_image(image_path, transform):
|
|
|
|
image = Image.open(image_path).convert("RGB")
|
|
|
|
return image, transform(image).unsqueeze(0)
|
|
|
|
def distance(current_node,target):
|
|
|
|
return abs(current_node.position[0]-target.position[0])+abs(current_node.position[1]-target.position[1])
|
|
|
|
|
|
|
|
#bfs
|
|
|
|
def bfs(isstate,final):
|
|
|
|
fringe=deque()
|
|
|
|
fringe.append(isstate)
|
|
|
|
path=[]
|
|
|
|
explored=[]
|
|
|
|
while(True):
|
|
|
|
if(len(fringe)==0):
|
|
|
|
return False
|
|
|
|
node=fringe.popleft()
|
|
|
|
if(node.position[0]==final.position[0] and node.position[1]==final.position[1]):
|
|
|
|
while(node.parent!=None):
|
|
|
|
path.append(node)
|
|
|
|
node=node.parent
|
|
|
|
return path
|
|
|
|
explored.append(node)
|
|
|
|
successors=succ(node)
|
|
|
|
for successor in successors:
|
|
|
|
if (successor not in fringe and successor not in explored):
|
|
|
|
fringe.append(successor)
|
|
|
|
def astar(isstate,final):
|
|
|
|
fringe=[]
|
|
|
|
heapq.heappush(fringe,(0,isstate))
|
|
|
|
path = []
|
|
|
|
explored = []
|
|
|
|
total_cost={isstate:0}
|
|
|
|
while(True):
|
|
|
|
if (len(fringe) == 0):
|
|
|
|
return False
|
|
|
|
a,node =heapq.heappop(fringe)
|
|
|
|
if (node.position[0] == final.position[0] and node.position[1] == final.position[1]):
|
|
|
|
while (node.parent != None):
|
|
|
|
path.append(node)
|
|
|
|
node = node.parent
|
|
|
|
return path
|
|
|
|
explored.append(node)
|
|
|
|
successors = succ(node)
|
|
|
|
for successor in successors:
|
|
|
|
new_cost=total_cost[node]+successor.cost
|
|
|
|
if (successor not in explored or new_cost<total_cost.get(successor,float('inf'))):
|
|
|
|
total_cost[successor]=new_cost
|
|
|
|
p=new_cost+distance(successor,final)
|
|
|
|
heapq.heappush(fringe,(p,successor))
|
|
|
|
|
|
|
|
#drzewko
|
|
|
|
tree_data_base = pd.read_csv('paczki.csv')
|
|
|
|
def entropy(data):
|
|
|
|
labels = data.iloc[:, -1] # Ostatnia kolumna zawiera etykiety klas i pomija 1 wiersz bo jest tytulowy
|
|
|
|
counts = labels.value_counts() #tu zlicza wszystkie opcje
|
2024-06-25 06:57:55 +02:00
|
|
|
probabilities = counts / len(labels)
|
2024-06-17 04:58:21 +02:00
|
|
|
entropy = -sum(probabilities * np.log2(probabilities))
|
|
|
|
return entropy
|
|
|
|
|
|
|
|
def information_gain(data, attribute):
|
|
|
|
total_entropy = entropy(data)
|
|
|
|
values = data[attribute].unique() #przypisujemy wszystkie opcje danego atrybutu np wyoski/niski/sredni
|
|
|
|
weighted_entropy = 0
|
|
|
|
for value in values:
|
|
|
|
subset = data[data[attribute] == value] # przypisujesz wszystkie wiersze danego value do subset
|
|
|
|
subset_entropy = entropy(subset)
|
|
|
|
weighted_entropy += (len(subset) / len(data)) * subset_entropy
|
|
|
|
return (total_entropy - weighted_entropy)
|
|
|
|
|
|
|
|
|
2024-06-25 06:57:55 +02:00
|
|
|
# Define constants
|
|
|
|
POPULATION_SIZE = 100
|
|
|
|
GENERATIONS = 50
|
|
|
|
MUTATION_RATE = 0.1
|
|
|
|
|
|
|
|
# Define movements
|
|
|
|
MOVES = ['UP', 'DOWN', 'LEFT', 'RIGHT']
|
|
|
|
|
|
|
|
|
|
|
|
# Fitness function
|
|
|
|
def fitness(path, start, goal, obstacles, center):
|
|
|
|
position = start[:]
|
|
|
|
for move in path:
|
|
|
|
if move == 'UP':
|
|
|
|
position[1] -= 1
|
|
|
|
elif move == 'DOWN':
|
|
|
|
position[1] += 1
|
|
|
|
elif move == 'LEFT':
|
|
|
|
position[0] -= 1
|
|
|
|
elif move == 'RIGHT':
|
|
|
|
position[0] += 1
|
|
|
|
|
|
|
|
# If we reach an obstacle
|
|
|
|
if position in obstacles:
|
|
|
|
return 0
|
|
|
|
|
|
|
|
# If we reach the goal
|
|
|
|
if position == goal:
|
|
|
|
break
|
|
|
|
|
|
|
|
# Calculate fitness based on distance from center
|
|
|
|
distance_from_center = abs(center[0] - goal[0]) + abs(center[1] - goal[1])
|
|
|
|
|
|
|
|
# We want to maximize distance from center
|
|
|
|
return distance_from_center
|
|
|
|
|
|
|
|
|
|
|
|
# Generate initial population
|
|
|
|
def generate_initial_population():
|
|
|
|
return [[random.choice(MOVES) for _ in range(50)] for _ in range(POPULATION_SIZE)]
|
|
|
|
|
|
|
|
|
|
|
|
# Selection
|
|
|
|
def selection(population, fitnesses):
|
|
|
|
selected = random.choices(population, weights=fitnesses, k=POPULATION_SIZE // 2)
|
|
|
|
return selected
|
|
|
|
|
|
|
|
|
|
|
|
# Crossover
|
|
|
|
def crossover(parent1, parent2):
|
|
|
|
crossover_point = random.randint(0, len(parent1))
|
|
|
|
return parent1[:crossover_point] + parent2[crossover_point:]
|
|
|
|
|
|
|
|
|
|
|
|
# Mutation
|
|
|
|
def mutate(path):
|
|
|
|
if random.random() < MUTATION_RATE:
|
|
|
|
index = random.randint(0, len(path) - 1)
|
|
|
|
path[index] = random.choice(MOVES)
|
|
|
|
return path
|
|
|
|
|
|
|
|
|
|
|
|
# Genetic Algorithm
|
|
|
|
def genetic_algorithm(start, goal, obstacles, center):
|
|
|
|
population = generate_initial_population()
|
|
|
|
|
|
|
|
for generation in range(GENERATIONS):
|
|
|
|
fitnesses = [fitness(path, start, goal, obstacles, center) for path in population]
|
|
|
|
population = selection(population, fitnesses)
|
|
|
|
new_population = []
|
|
|
|
|
|
|
|
for i in range(0, len(population), 2):
|
|
|
|
if i + 1 < len(population):
|
|
|
|
child1 = crossover(population[i], population[i + 1])
|
|
|
|
child2 = crossover(population[i + 1], population[i])
|
|
|
|
new_population.append(mutate(child1))
|
|
|
|
new_population.append(mutate(child2))
|
|
|
|
|
|
|
|
population = new_population
|
|
|
|
|
|
|
|
best_path = max(population, key=lambda p: fitness(p, start, goal, obstacles, center))
|
|
|
|
return best_path
|
|
|
|
|
|
|
|
def find_best_destination(freight, current_position, obstacles, center):
|
|
|
|
if freight.content != 'car_parts':
|
|
|
|
img = freight.image
|
|
|
|
image = Image.open(img).convert("RGB")
|
|
|
|
tensor = transform(image).unsqueeze(0)
|
|
|
|
with torch.no_grad():
|
|
|
|
tensor = tensor.to(device)
|
|
|
|
outputs = model(tensor)
|
|
|
|
probabilities = torch.nn.functional.softmax(outputs, dim=1)
|
|
|
|
score = probabilities.cpu().numpy().flatten()
|
|
|
|
|
|
|
|
best_goal = None
|
|
|
|
|
|
|
|
if score[0] > score[1] and score[0] > score[2]:
|
|
|
|
print("flammable")
|
|
|
|
best_goal, best_path = find_best_position_with_ga(current_position, sorted(free_lime), obstacles, center)
|
|
|
|
free_lime.remove(best_goal)
|
|
|
|
elif score[1] > score[0] and score[1] > score[2]:
|
|
|
|
print("fragile")
|
|
|
|
best_goal, best_path = find_best_position_with_ga(current_position, sorted(free_pink), obstacles, center)
|
|
|
|
free_pink.remove(best_goal)
|
|
|
|
elif score[2] > score[0] and score[2] > score[1]:
|
|
|
|
print("toxic")
|
|
|
|
best_goal, best_path = find_best_position_with_ga(current_position, sorted(free_red), obstacles, center)
|
|
|
|
free_red.remove(best_goal)
|
|
|
|
else:
|
|
|
|
best_goal, best_path = find_best_position_with_ga(current_position, sorted(free_cyan), obstacles, center)
|
|
|
|
free_cyan.remove(best_goal)
|
|
|
|
|
|
|
|
return best_goal
|
|
|
|
|
|
|
|
|
|
|
|
def find_best_position_with_ga(current_position, goal_positions, obstacles, center):
|
|
|
|
best_path = None
|
|
|
|
best_score = float('-inf') # Мы ищем максимальное значение
|
|
|
|
best_goal = None
|
|
|
|
|
|
|
|
for goal in goal_positions:
|
|
|
|
path = genetic_algorithm(current_position, goal, obstacles, center)
|
|
|
|
score = fitness(path, current_position, goal, obstacles, center)
|
|
|
|
if score > best_score:
|
|
|
|
best_score = score
|
|
|
|
best_path = path
|
|
|
|
best_goal = goal
|
|
|
|
|
|
|
|
return best_goal, best_path
|
|
|
|
|
|
|
|
|
2024-06-17 04:58:21 +02:00
|
|
|
|
|
|
|
# Main game loop
|
|
|
|
def game_loop():
|
|
|
|
init_game()
|
2024-06-25 06:57:55 +02:00
|
|
|
obstacles = []
|
|
|
|
center = [GRID_WIDTH // 2, GRID_HEIGHT // 2]
|
2024-06-17 04:58:21 +02:00
|
|
|
current=Node(forklift_pos,rotation,'start',None,0)
|
|
|
|
dest=current_freight.pop()
|
|
|
|
final=Node([dest[0],dest[1]],'N','final',None,0)
|
|
|
|
path=astar(current,final)
|
|
|
|
path.reverse()
|
|
|
|
for node in path:
|
|
|
|
print(node.action)
|
|
|
|
i=0
|
|
|
|
running = True
|
|
|
|
while running:
|
|
|
|
for event in pygame.event.get():
|
|
|
|
if event.type == pygame.QUIT:
|
|
|
|
running = False
|
|
|
|
elif event.type == pygame.KEYDOWN:
|
|
|
|
if event.key == pygame.K_LEFT:
|
|
|
|
rotate_forklift('L')
|
|
|
|
load_images()
|
|
|
|
elif event.key == pygame.K_RIGHT:
|
|
|
|
rotate_forklift('R')
|
|
|
|
load_images()
|
|
|
|
elif event.key == pygame.K_UP:
|
|
|
|
move_forklift()
|
|
|
|
elif event.key == pygame.K_SPACE:
|
|
|
|
handle_freight()
|
|
|
|
elif event.key == pygame.K_r:
|
|
|
|
reset_truck_bed_freight()
|
|
|
|
|
|
|
|
draw_board()
|
|
|
|
draw_truck_bed_and_racks()
|
|
|
|
draw_freight()
|
|
|
|
draw_forklift_and_freight()
|
|
|
|
pygame.display.flip()
|
|
|
|
clock.tick(FPS)
|
|
|
|
if(len(current_freight)==0):
|
|
|
|
reset_truck_bed_freight()
|
|
|
|
if(forklift_pos==final.position):
|
|
|
|
handle_freight()
|
2024-06-25 06:57:55 +02:00
|
|
|
obstacles.append(final.position)
|
2024-06-17 04:58:21 +02:00
|
|
|
if carrying_freight:
|
2024-06-25 06:57:55 +02:00
|
|
|
destination = find_best_destination(carried_freight, forklift_pos, obstacles, center)
|
2024-06-17 04:58:21 +02:00
|
|
|
print(destination)
|
2024-06-25 06:57:55 +02:00
|
|
|
final = Node([destination[0],destination[1]],'N','final',None,0)
|
2024-06-17 04:58:21 +02:00
|
|
|
else:
|
|
|
|
destination=current_freight.pop()
|
|
|
|
print(destination)
|
|
|
|
final = Node([destination[0], destination[1]], 'N', 'final', None, 0)
|
|
|
|
curr=Node(forklift_pos,rotation,'start',None,0)
|
|
|
|
path=astar(curr,final)
|
|
|
|
path.reverse()
|
|
|
|
print(path)
|
|
|
|
i=0
|
|
|
|
|
|
|
|
if(i<len(path)):
|
|
|
|
nod=path[i]
|
|
|
|
if(nod.action=='FW'):
|
|
|
|
move_forklift()
|
|
|
|
elif(nod.action=='L'):
|
|
|
|
rotate_forklift('L')
|
|
|
|
load_images()
|
|
|
|
elif(nod.action=='R'):
|
|
|
|
rotate_forklift('R')
|
|
|
|
load_images()
|
|
|
|
i=i+1
|
2024-06-25 06:57:55 +02:00
|
|
|
pygame.time.wait(100)
|
2024-06-17 04:58:21 +02:00
|
|
|
|
|
|
|
pygame.quit()
|
|
|
|
sys.exit()
|
|
|
|
|
|
|
|
game_loop()
|