dodalem drzewo decyzyjne

This commit is contained in:
Stanislav Lytvynenko 2024-06-27 02:50:38 +02:00
parent 1fd7a90fd1
commit bf6cef912e
4 changed files with 141 additions and 3 deletions

View File

@ -3,5 +3,5 @@
<component name="Black">
<option name="sdkName" value="Python 3.11 (ai-wozek) (2)" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.12 (ai-wozek)" project-jdk-type="Python SDK" />
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 (ai-wozek)" project-jdk-type="Python SDK" />
</project>

View File

@ -4,7 +4,7 @@
<content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/venv" />
</content>
<orderEntry type="jdk" jdkName="Python 3.12 (ai-wozek)" jdkType="Python SDK" />
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

74
ai-wozek/decision_tree Normal file
View File

@ -0,0 +1,74 @@
digraph {
root [label=root]
Label_State [label=Label_State]
no [label=no]
Label_State -> no [label=""]
Height [label=Height]
no -> Height [label=""]
no [label=no shape=box]
Height -> no [label=medium]
no [label=no shape=box]
Height -> no [label=big]
small [label=small]
Height -> small [label=""]
Width [label=Width]
small -> Width [label=""]
small [label=small]
Width -> small [label=""]
Depth [label=Depth]
small -> Depth [label=""]
no [label=no shape=box]
Depth -> no [label=big]
yes [label=yes shape=box]
Depth -> yes [label=medium]
no [label=no shape=box]
Width -> no [label=big]
medium [label=medium]
Width -> medium [label=""]
Depth [label=Depth]
medium -> Depth [label=""]
no [label=no shape=box]
Depth -> no [label=big]
yes [label=yes shape=box]
Depth -> yes [label=medium]
yes [label=yes shape=box]
Depth -> yes [label=small]
yes [label=yes]
Label_State -> yes [label=""]
Damage [label=Damage]
yes -> Damage [label=""]
yes [label=yes shape=box]
Damage -> yes [label=no]
yes [label=yes]
Damage -> yes [label=""]
Height [label=Height]
yes -> Height [label=""]
no [label=no shape=box]
Height -> no [label=medium]
no [label=no shape=box]
Height -> no [label=big]
small [label=small]
Height -> small [label=""]
Width [label=Width]
small -> Width [label=""]
no [label=no shape=box]
Width -> no [label=big]
small [label=small]
Width -> small [label=""]
Depth [label=Depth]
small -> Depth [label=""]
yes [label=yes shape=box]
Depth -> yes [label=medium]
no [label=no shape=box]
Depth -> no [label=big]
yes [label=yes shape=box]
Depth -> yes [label=small]
medium [label=medium]
Width -> medium [label=""]
Value [label=Value]
medium -> Value [label=""]
yes [label=yes shape=box]
Value -> yes [label=cheap]
no [label=no shape=box]
Value -> no [label=expensive]
}

View File

@ -378,13 +378,77 @@ def astar(isstate,final):
#drzewko
tree_data_base = pd.read_csv('paczki.csv')
def entropy(data):
labels = data.iloc[:, -1] # Ostatnia kolumna zawiera etykiety klas i pomija 1 wiersz bo jest tytulowy
counts = labels.value_counts() #tu zlicza wszystkie opcje
counts = labels.value_counts() # tu zlicza wszystkie opcje
probabilities = counts / len(labels)
entropy = -sum(probabilities * np.log2(probabilities))
return entropy
def information_gain(data, attribute):
total_entropy = entropy(data)
values = data[attribute].unique() # przypisujemy wszystkie opcje danego atrybutu np wyoski/niski/sredni
weighted_entropy = 0
for value in values:
subset = data[data[attribute] == value] # przypisujesz wszystkie wiersze danego value do subset
subset_entropy = entropy(subset)
weighted_entropy += (len(subset) / len(data)) * subset_entropy
return total_entropy - weighted_entropy
def id3(data, attributes, target_attribute):
unique_targets = data[target_attribute].unique()
# Jeśli wszystkie przykłady mają tę samą etykietę, zwróć tę etykietę
if len(unique_targets) == 1:
return unique_targets[0]
# Jeśli zbiór atrybutów jest pusty, zwróć najczęstszą etykietę
if len(attributes) == 0:
return data[target_attribute].mode()[0]
# Wybierz atrybut o największym przyroście informacji
info_gains = [(attr, information_gain(data, attr)) for attr in attributes]
best_attribute = max(info_gains, key=lambda x: x[1])[0]
# Tworzymy węzeł drzewa
tree = {best_attribute: {}}
# Usuwamy wybrany atrybut z listy atrybutów
attributes = [attr for attr in attributes if attr != best_attribute]
# Dla każdej wartości wybranego atrybutu tworzę gałąź drzewa
for value in data[best_attribute].unique():
subset = data[data[best_attribute] == value]
subtree = id3(subset, attributes, target_attribute)
tree[best_attribute][value] = subtree
return tree
# Przygotowanie danych
data = tree_data_base.iloc[:, :9] # Zakładamy, że ostatnia kolumna to etykieta, a pierwsze osiem kolumn to atrybuty
attributes = list(data.columns[:-1])
target_attribute = data.columns[-1]
# Trenowanie drzewa decyzyjnego
decision_tree = id3(data, attributes, target_attribute)
# Opcja podglądu wyuczonego drzewa
def print_tree(tree, indent=""):
if isinstance(tree, dict):
for key, value in tree.items():
print(f"{indent}{key}")
print_tree(value, indent + " ")
else:
print(f"{indent}{tree}")
print_tree(decision_tree)
def information_gain(data, attribute):
total_entropy = entropy(data)
values = data[attribute].unique() #przypisujemy wszystkie opcje danego atrybutu np wyoski/niski/sredni