Compare commits

...

3 Commits

Author SHA1 Message Date
df9fa479c6 Upload files to "ai-wozek" 2024-06-13 10:51:10 +02:00
a024da6e00 Delete wozek.py 2024-06-13 10:50:56 +02:00
ae893f20d8 Upload files to "/" 2024-06-13 10:50:18 +02:00

View File

@ -9,6 +9,11 @@ from classes import *
import numpy as np
import pandas as pd
import math
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
import category_encoders
from sklearn import metrics
from sklearn import tree
class Node():
def __init__(self,position,rotation,action,parent,cost):
@ -335,8 +340,31 @@ def astar(isstate,final):
heapq.heappush(fringe,(p,successor))
#drzewko
cols=['Height', 'Width', 'Depth', 'Weight', 'Damage', 'Label_State', 'Content', 'Value']
tree_data_base = pd.read_csv('paczki.csv')
def entropy(data):
x=tree_data_base.drop(columns='Acceptance')
y=tree_data_base['Acceptance']
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4)
# Create Decision Tree classifer object
encoder = category_encoders.OrdinalEncoder(cols=cols)
x_train = encoder.fit_transform(x_train)
x_test = encoder.transform(x_test)
clf = DecisionTreeClassifier(criterion='entropy')
clf = clf.fit(x_train,y_train)
#Predict the response for test dataset
y_pred = clf.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
text_tree=tree.export_text(clf)
print(text_tree)
# Train Decision Tree Classifer
#clf = clf.fit(x_train,y_train)
"""def entropy(data):
labels = data.iloc[:, -1] # Ostatnia kolumna zawiera etykiety klas i pomija 1 wiersz bo jest tytulowy
counts = labels.value_counts() #tu zlicza wszystkie opcje
probabilities = counts / len(labels)
@ -351,10 +379,10 @@ def information_gain(data, attribute):
subset = data[data[attribute] == value] # przypisujesz wszystkie wiersze danego value do subset
subset_entropy = entropy(subset)
weighted_entropy += (len(subset) / len(data)) * subset_entropy
return (total_entropy - weighted_entropy)
return (total_entropy - weighted_entropy)"""
# Main game loop
def game_loop():