439 lines
14 KiB
Python
439 lines
14 KiB
Python
import pygame
|
|
import sys
|
|
import random
|
|
import os
|
|
import time
|
|
from collections import deque
|
|
import heapq
|
|
from classes import *
|
|
import numpy as np
|
|
import pandas as pd
|
|
import math
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.tree import DecisionTreeClassifier
|
|
import category_encoders
|
|
from sklearn import metrics
|
|
from sklearn import tree
|
|
|
|
class Node():
|
|
def __init__(self,position,rotation,action,parent,cost):
|
|
self.position=position
|
|
self.rotation=rotation
|
|
self.action=action
|
|
self.parent=parent
|
|
self.cost=cost
|
|
|
|
def __lt__(self, other):
|
|
return (self.cost < other.cost)
|
|
def __le__(self, other):
|
|
return (self.cost <= other.cost)
|
|
|
|
# Initialize Pygame
|
|
pygame.init()
|
|
|
|
# Constants
|
|
TILE_SIZE = 96 # Size of a square tile in pixels
|
|
GRID_WIDTH, GRID_HEIGHT = 16,8 # Grid dimensions
|
|
SCREEN_WIDTH, SCREEN_HEIGHT = GRID_WIDTH * TILE_SIZE, GRID_HEIGHT * TILE_SIZE
|
|
FPS = 60 # Frames per second
|
|
|
|
# Setup display
|
|
screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
|
|
pygame.display.set_caption('Forklift Game')
|
|
|
|
# Clock
|
|
clock = pygame.time.Clock()
|
|
|
|
# Function to load and scale images
|
|
def load_image(name, scale=None):
|
|
"""Loads an image and optionally scales it."""
|
|
image = pygame.image.load(name).convert_alpha()
|
|
if scale:
|
|
image = pygame.transform.scale(image, scale)
|
|
return image
|
|
|
|
# Placeholder for images (will be loaded after video mode set)
|
|
forklift_image_full = None
|
|
freight_images_full = None
|
|
|
|
# Game variables
|
|
forklift_pos = [7, 0]
|
|
rotation='E'# Adjusted starting position of the forklift
|
|
carrying_freight = False
|
|
carried_freight = None
|
|
freight_positions = {} # Dictionary to keep track of freight positions and types
|
|
|
|
|
|
tile_cost={}
|
|
tile_cost[(8,0)]=10
|
|
tile_cost[(7,1)]=10
|
|
tile_cost[(6,1)]=3
|
|
tile_cost[(5,0)]=10
|
|
|
|
|
|
# Load images
|
|
def load_images():
|
|
global forklift_image_full, freight_images_full
|
|
global rotation
|
|
if rotation=='E':
|
|
forklift_image_full = load_image('forkliftE.png', (TILE_SIZE, TILE_SIZE))
|
|
elif rotation=='W':
|
|
forklift_image_full = load_image('forkliftW.png', (TILE_SIZE, TILE_SIZE))
|
|
elif rotation=='N':
|
|
forklift_image_full = load_image('forkliftN.png', (TILE_SIZE, TILE_SIZE))
|
|
elif rotation=='S':
|
|
forklift_image_full = load_image('forkliftS.png', (TILE_SIZE, TILE_SIZE))
|
|
#forklift_image_full = load_image('forklift.png', (TILE_SIZE, TILE_SIZE))
|
|
freight_images_full = {
|
|
'clothes': load_image('clothes.png', (TILE_SIZE, TILE_SIZE)),
|
|
'fruit': load_image('fruit.png', (TILE_SIZE, TILE_SIZE)),
|
|
'nuclear_waste': load_image('nuclear_waste.png', (TILE_SIZE, TILE_SIZE)),
|
|
'car_parts': load_image('car_parts.png', (TILE_SIZE, TILE_SIZE)),
|
|
}
|
|
|
|
# Initialize or reset game elements
|
|
def init_game():
|
|
freight_positions.clear()
|
|
load_images() # Ensure images are loaded after video mode set
|
|
reset_truck_bed_freight()
|
|
|
|
# Reset freight on the truck bed
|
|
def reset_truck_bed_freight():
|
|
types = list(freight_images_full.keys())
|
|
for x in range(12, 16):
|
|
freight_positions[(x, 0)] = random.choice(types)
|
|
|
|
# Drawing functions
|
|
def draw_board():
|
|
screen.fill((255, 255, 255))
|
|
for x in range(GRID_WIDTH):
|
|
for y in range(GRID_HEIGHT):
|
|
pygame.draw.rect(screen, (0, 0, 0), pygame.Rect(x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE), 1)
|
|
|
|
def draw_truck_bed_and_racks():
|
|
for x in range(12, 16):
|
|
pygame.draw.rect(screen, (0, 0, 255), (x * TILE_SIZE, 0, TILE_SIZE, TILE_SIZE))
|
|
for y in range(5, 8):
|
|
for x in range(GRID_WIDTH):
|
|
pygame.draw.rect(screen, (165, 42, 42), (x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE))
|
|
for key in tile_cost:
|
|
x=key[0]
|
|
y=key[1]
|
|
pygame.draw.rect(screen, (10*tile_cost[key], 130, 100), (x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE))
|
|
|
|
|
|
def draw_forklift_and_freight():
|
|
x, y = forklift_pos
|
|
if carrying_freight:
|
|
# Draw smaller images when carrying freight
|
|
small_size = (TILE_SIZE // 2, TILE_SIZE // 2)
|
|
forklift_small = pygame.transform.scale(forklift_image_full, small_size)
|
|
freight_small = pygame.transform.scale(freight_images_full[carried_freight], small_size)
|
|
screen.blit(forklift_small, (x * TILE_SIZE, y * TILE_SIZE + TILE_SIZE // 2))
|
|
screen.blit(freight_small, (x * TILE_SIZE + TILE_SIZE // 2, y * TILE_SIZE))
|
|
else:
|
|
screen.blit(forklift_image_full, (x * TILE_SIZE, y * TILE_SIZE))
|
|
|
|
def draw_freight():
|
|
for (x, y), freight_type in freight_positions.items():
|
|
screen.blit(freight_images_full[freight_type], (x * TILE_SIZE, y * TILE_SIZE))
|
|
|
|
# Game mechanics
|
|
def move_forklift():
|
|
global forklift_pos
|
|
if(rotation=='E'):
|
|
new_pos=[forklift_pos[0]+1,forklift_pos[1]]
|
|
elif(rotation=='W'):
|
|
new_pos=[forklift_pos[0]-1,forklift_pos[1]]
|
|
elif(rotation=='N'):
|
|
new_pos=[forklift_pos[0],forklift_pos[1]+1]
|
|
elif (rotation == 'S'):
|
|
new_pos = [forklift_pos[0], forklift_pos[1] - 1]
|
|
#new_pos = [forklift_pos[0] + dx, forklift_pos[1] + dy]
|
|
if 0 <= new_pos[0] < GRID_WIDTH and 0 <= new_pos[1] < GRID_HEIGHT:
|
|
forklift_pos = new_pos
|
|
def rotate_forklift(x):
|
|
global rotation
|
|
rot=['N','E','S','W']
|
|
rots=rot.index(rotation)
|
|
if x=='R':
|
|
if rots==0:
|
|
x=rot[3]
|
|
else:
|
|
x=rot[rots-1]
|
|
|
|
elif x=='L':
|
|
if rots==3:
|
|
x=rot[0]
|
|
else:
|
|
x=rot[rots+1]
|
|
rotation=x
|
|
def handle_freight():
|
|
global carrying_freight, carried_freight, freight_positions
|
|
pos_tuple = tuple(forklift_pos)
|
|
if carrying_freight:
|
|
if pos_tuple not in freight_positions:
|
|
freight_positions[pos_tuple] = carried_freight
|
|
carrying_freight = False
|
|
carried_freight = None
|
|
else:
|
|
if pos_tuple in freight_positions:
|
|
carried_freight = freight_positions.pop(pos_tuple)
|
|
carrying_freight = True
|
|
|
|
#searching for successors
|
|
def succ(current_node):
|
|
current_rotation=current_node.rotation
|
|
x=current_node.position[0]
|
|
y=current_node.position[1]
|
|
current_cost=tile_cost.get((x,y),1)
|
|
successors=[]
|
|
if(current_rotation=="N"):
|
|
if(y>0):
|
|
pos=[]
|
|
pos.append(x)
|
|
|
|
pos.append(y-1)
|
|
action='FW'
|
|
successor=Node(pos,current_rotation,action,current_node,current_cost)
|
|
successors.append(successor)
|
|
if(x>0):
|
|
pos = []
|
|
pos.append(x)
|
|
pos.append(y)
|
|
new_rotation='W'
|
|
action='L'
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
successors.append(successor)
|
|
if(x<15):
|
|
pos = []
|
|
pos.append(x)
|
|
pos.append(y)
|
|
new_rotation='E'
|
|
action='R'
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
successors.append(successor)
|
|
|
|
|
|
elif (current_rotation == "S"):
|
|
if (y < 7):
|
|
pos = []
|
|
pos.append(x)
|
|
pos.append(y + 1)
|
|
action = 'FW'
|
|
successor = Node(pos, current_rotation,action,current_node,current_cost)
|
|
successors.append(successor)
|
|
if (x <15):
|
|
pos = []
|
|
pos.append(x)
|
|
pos.append(y)
|
|
new_rotation = 'E'
|
|
action='L'
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
successors.append(successor)
|
|
if (x > 0):
|
|
pos = []
|
|
pos.append(x)
|
|
pos.append(y)
|
|
new_rotation = 'W'
|
|
action = 'R'
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
successors.append(successor)
|
|
|
|
elif (current_rotation == "E"):
|
|
if (x <15):
|
|
pos = []
|
|
pos.append(x+1)
|
|
pos.append(y)
|
|
action = 'FW'
|
|
successor = Node(pos, current_rotation,action,current_node,current_cost)
|
|
successors.append(successor)
|
|
if (y <7):
|
|
pos = []
|
|
pos.append(x)
|
|
pos.append(y)
|
|
new_rotation = 'S'
|
|
action='R'
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
successors.append(successor)
|
|
if (y >0):
|
|
pos = []
|
|
pos.append(x)
|
|
pos.append(y)
|
|
new_rotation = 'N'
|
|
action = 'L'
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
successors.append(successor)
|
|
|
|
elif (current_rotation == "W"):
|
|
if (x > 0):
|
|
pos = []
|
|
pos.append(x-1)
|
|
pos.append(y)
|
|
action = 'FW'
|
|
successor = Node(pos, current_rotation,action,current_node,current_cost)
|
|
successors.append(successor)
|
|
if (y >0):
|
|
pos = []
|
|
pos.append(x)
|
|
pos.append(y)
|
|
new_rotation = 'N'
|
|
action='R'
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
successors.append(successor)
|
|
if (y <7):
|
|
pos = []
|
|
pos.append(x)
|
|
pos.append(y)
|
|
new_rotation = 'S'
|
|
action = 'L'
|
|
successor = Node(pos, new_rotation,action,current_node,current_cost)
|
|
successors.append(successor)
|
|
|
|
return successors
|
|
|
|
def distance(current_node,target):
|
|
return abs(current_node.position[0]-target.position[0])+abs(current_node.position[1]-target.position[1])
|
|
|
|
#bfs
|
|
def bfs(isstate,final):
|
|
fringe=deque()
|
|
fringe.append(isstate)
|
|
path=[]
|
|
explored=[]
|
|
while(True):
|
|
if(len(fringe)==0):
|
|
return False
|
|
node=fringe.popleft()
|
|
if(node.position[0]==final.position[0] and node.position[1]==final.position[1]):
|
|
while(node.parent!=None):
|
|
path.append(node)
|
|
node=node.parent
|
|
return path
|
|
explored.append(node)
|
|
successors=succ(node)
|
|
for successor in successors:
|
|
if (successor not in fringe and successor not in explored):
|
|
fringe.append(successor)
|
|
def astar(isstate,final):
|
|
fringe=[]
|
|
heapq.heappush(fringe,(0,isstate))
|
|
path = []
|
|
explored = []
|
|
total_cost={isstate:0}
|
|
while(True):
|
|
if (len(fringe) == 0):
|
|
return False
|
|
a,node =heapq.heappop(fringe)
|
|
if (node.position[0] == final.position[0] and node.position[1] == final.position[1]):
|
|
while (node.parent != None):
|
|
path.append(node)
|
|
node = node.parent
|
|
return path
|
|
explored.append(node)
|
|
successors = succ(node)
|
|
for successor in successors:
|
|
new_cost=total_cost[node]+successor.cost
|
|
if (successor not in explored or new_cost<total_cost.get(successor,float('inf'))):
|
|
total_cost[successor]=new_cost
|
|
p=new_cost+distance(successor,final)
|
|
heapq.heappush(fringe,(p,successor))
|
|
|
|
#drzewko
|
|
cols=['Height', 'Width', 'Depth', 'Weight', 'Damage', 'Label_State', 'Content', 'Value']
|
|
tree_data_base = pd.read_csv('paczki.csv')
|
|
x=tree_data_base.drop(columns='Acceptance')
|
|
y=tree_data_base['Acceptance']
|
|
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4)
|
|
# Create Decision Tree classifer object
|
|
encoder = category_encoders.OrdinalEncoder(cols=cols)
|
|
|
|
x_train = encoder.fit_transform(x_train)
|
|
|
|
x_test = encoder.transform(x_test)
|
|
|
|
clf = DecisionTreeClassifier(criterion='entropy')
|
|
clf = clf.fit(x_train,y_train)
|
|
|
|
#Predict the response for test dataset
|
|
y_pred = clf.predict(x_test)
|
|
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
|
|
|
|
text_tree=tree.export_text(clf)
|
|
print(text_tree)
|
|
# Train Decision Tree Classifer
|
|
#clf = clf.fit(x_train,y_train)
|
|
|
|
"""def entropy(data):
|
|
labels = data.iloc[:, -1] # Ostatnia kolumna zawiera etykiety klas i pomija 1 wiersz bo jest tytulowy
|
|
counts = labels.value_counts() #tu zlicza wszystkie opcje
|
|
probabilities = counts / len(labels)
|
|
entropy = -sum(probabilities * np.log2(probabilities))
|
|
return entropy
|
|
|
|
def information_gain(data, attribute):
|
|
total_entropy = entropy(data)
|
|
values = data[attribute].unique() #przypisujemy wszystkie opcje danego atrybutu np wyoski/niski/sredni
|
|
weighted_entropy = 0
|
|
for value in values:
|
|
subset = data[data[attribute] == value] # przypisujesz wszystkie wiersze danego value do subset
|
|
subset_entropy = entropy(subset)
|
|
weighted_entropy += (len(subset) / len(data)) * subset_entropy
|
|
return (total_entropy - weighted_entropy)"""
|
|
|
|
|
|
|
|
|
|
# Main game loop
|
|
def game_loop():
|
|
init_game()
|
|
current=Node(forklift_pos,rotation,'start',None,0)
|
|
final=Node([10,5],'N','final',None,0)
|
|
path=astar(current,final)
|
|
path.reverse()
|
|
for node in path:
|
|
print(node.action)
|
|
i=0
|
|
running = True
|
|
while running:
|
|
for event in pygame.event.get():
|
|
if event.type == pygame.QUIT:
|
|
running = False
|
|
elif event.type == pygame.KEYDOWN:
|
|
if event.key == pygame.K_LEFT:
|
|
rotate_forklift('L')
|
|
load_images()
|
|
elif event.key == pygame.K_RIGHT:
|
|
rotate_forklift('R')
|
|
load_images()
|
|
elif event.key == pygame.K_UP:
|
|
move_forklift()
|
|
elif event.key == pygame.K_SPACE:
|
|
handle_freight()
|
|
elif event.key == pygame.K_r:
|
|
reset_truck_bed_freight()
|
|
|
|
draw_board()
|
|
draw_truck_bed_and_racks()
|
|
draw_freight()
|
|
draw_forklift_and_freight()
|
|
pygame.display.flip()
|
|
clock.tick(FPS)
|
|
if(i<len(path)):
|
|
nod=path[i]
|
|
if(nod.action=='FW'):
|
|
move_forklift()
|
|
elif(nod.action=='L'):
|
|
rotate_forklift('L')
|
|
load_images()
|
|
elif(nod.action=='R'):
|
|
rotate_forklift('R')
|
|
load_images()
|
|
i=i+1
|
|
pygame.time.wait(500)
|
|
|
|
pygame.quit()
|
|
sys.exit()
|
|
|
|
game_loop()
|