wozek/wozek.py
2024-06-13 10:50:18 +02:00

439 lines
14 KiB
Python

import pygame
import sys
import random
import os
import time
from collections import deque
import heapq
from classes import *
import numpy as np
import pandas as pd
import math
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
import category_encoders
from sklearn import metrics
from sklearn import tree
class Node():
def __init__(self,position,rotation,action,parent,cost):
self.position=position
self.rotation=rotation
self.action=action
self.parent=parent
self.cost=cost
def __lt__(self, other):
return (self.cost < other.cost)
def __le__(self, other):
return (self.cost <= other.cost)
# Initialize Pygame
pygame.init()
# Constants
TILE_SIZE = 96 # Size of a square tile in pixels
GRID_WIDTH, GRID_HEIGHT = 16,8 # Grid dimensions
SCREEN_WIDTH, SCREEN_HEIGHT = GRID_WIDTH * TILE_SIZE, GRID_HEIGHT * TILE_SIZE
FPS = 60 # Frames per second
# Setup display
screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
pygame.display.set_caption('Forklift Game')
# Clock
clock = pygame.time.Clock()
# Function to load and scale images
def load_image(name, scale=None):
"""Loads an image and optionally scales it."""
image = pygame.image.load(name).convert_alpha()
if scale:
image = pygame.transform.scale(image, scale)
return image
# Placeholder for images (will be loaded after video mode set)
forklift_image_full = None
freight_images_full = None
# Game variables
forklift_pos = [7, 0]
rotation='E'# Adjusted starting position of the forklift
carrying_freight = False
carried_freight = None
freight_positions = {} # Dictionary to keep track of freight positions and types
tile_cost={}
tile_cost[(8,0)]=10
tile_cost[(7,1)]=10
tile_cost[(6,1)]=3
tile_cost[(5,0)]=10
# Load images
def load_images():
global forklift_image_full, freight_images_full
global rotation
if rotation=='E':
forklift_image_full = load_image('forkliftE.png', (TILE_SIZE, TILE_SIZE))
elif rotation=='W':
forklift_image_full = load_image('forkliftW.png', (TILE_SIZE, TILE_SIZE))
elif rotation=='N':
forklift_image_full = load_image('forkliftN.png', (TILE_SIZE, TILE_SIZE))
elif rotation=='S':
forklift_image_full = load_image('forkliftS.png', (TILE_SIZE, TILE_SIZE))
#forklift_image_full = load_image('forklift.png', (TILE_SIZE, TILE_SIZE))
freight_images_full = {
'clothes': load_image('clothes.png', (TILE_SIZE, TILE_SIZE)),
'fruit': load_image('fruit.png', (TILE_SIZE, TILE_SIZE)),
'nuclear_waste': load_image('nuclear_waste.png', (TILE_SIZE, TILE_SIZE)),
'car_parts': load_image('car_parts.png', (TILE_SIZE, TILE_SIZE)),
}
# Initialize or reset game elements
def init_game():
freight_positions.clear()
load_images() # Ensure images are loaded after video mode set
reset_truck_bed_freight()
# Reset freight on the truck bed
def reset_truck_bed_freight():
types = list(freight_images_full.keys())
for x in range(12, 16):
freight_positions[(x, 0)] = random.choice(types)
# Drawing functions
def draw_board():
screen.fill((255, 255, 255))
for x in range(GRID_WIDTH):
for y in range(GRID_HEIGHT):
pygame.draw.rect(screen, (0, 0, 0), pygame.Rect(x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE), 1)
def draw_truck_bed_and_racks():
for x in range(12, 16):
pygame.draw.rect(screen, (0, 0, 255), (x * TILE_SIZE, 0, TILE_SIZE, TILE_SIZE))
for y in range(5, 8):
for x in range(GRID_WIDTH):
pygame.draw.rect(screen, (165, 42, 42), (x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE))
for key in tile_cost:
x=key[0]
y=key[1]
pygame.draw.rect(screen, (10*tile_cost[key], 130, 100), (x * TILE_SIZE, y * TILE_SIZE, TILE_SIZE, TILE_SIZE))
def draw_forklift_and_freight():
x, y = forklift_pos
if carrying_freight:
# Draw smaller images when carrying freight
small_size = (TILE_SIZE // 2, TILE_SIZE // 2)
forklift_small = pygame.transform.scale(forklift_image_full, small_size)
freight_small = pygame.transform.scale(freight_images_full[carried_freight], small_size)
screen.blit(forklift_small, (x * TILE_SIZE, y * TILE_SIZE + TILE_SIZE // 2))
screen.blit(freight_small, (x * TILE_SIZE + TILE_SIZE // 2, y * TILE_SIZE))
else:
screen.blit(forklift_image_full, (x * TILE_SIZE, y * TILE_SIZE))
def draw_freight():
for (x, y), freight_type in freight_positions.items():
screen.blit(freight_images_full[freight_type], (x * TILE_SIZE, y * TILE_SIZE))
# Game mechanics
def move_forklift():
global forklift_pos
if(rotation=='E'):
new_pos=[forklift_pos[0]+1,forklift_pos[1]]
elif(rotation=='W'):
new_pos=[forklift_pos[0]-1,forklift_pos[1]]
elif(rotation=='N'):
new_pos=[forklift_pos[0],forklift_pos[1]+1]
elif (rotation == 'S'):
new_pos = [forklift_pos[0], forklift_pos[1] - 1]
#new_pos = [forklift_pos[0] + dx, forklift_pos[1] + dy]
if 0 <= new_pos[0] < GRID_WIDTH and 0 <= new_pos[1] < GRID_HEIGHT:
forklift_pos = new_pos
def rotate_forklift(x):
global rotation
rot=['N','E','S','W']
rots=rot.index(rotation)
if x=='R':
if rots==0:
x=rot[3]
else:
x=rot[rots-1]
elif x=='L':
if rots==3:
x=rot[0]
else:
x=rot[rots+1]
rotation=x
def handle_freight():
global carrying_freight, carried_freight, freight_positions
pos_tuple = tuple(forklift_pos)
if carrying_freight:
if pos_tuple not in freight_positions:
freight_positions[pos_tuple] = carried_freight
carrying_freight = False
carried_freight = None
else:
if pos_tuple in freight_positions:
carried_freight = freight_positions.pop(pos_tuple)
carrying_freight = True
#searching for successors
def succ(current_node):
current_rotation=current_node.rotation
x=current_node.position[0]
y=current_node.position[1]
current_cost=tile_cost.get((x,y),1)
successors=[]
if(current_rotation=="N"):
if(y>0):
pos=[]
pos.append(x)
pos.append(y-1)
action='FW'
successor=Node(pos,current_rotation,action,current_node,current_cost)
successors.append(successor)
if(x>0):
pos = []
pos.append(x)
pos.append(y)
new_rotation='W'
action='L'
successor = Node(pos, new_rotation,action,current_node,current_cost)
successors.append(successor)
if(x<15):
pos = []
pos.append(x)
pos.append(y)
new_rotation='E'
action='R'
successor = Node(pos, new_rotation,action,current_node,current_cost)
successors.append(successor)
elif (current_rotation == "S"):
if (y < 7):
pos = []
pos.append(x)
pos.append(y + 1)
action = 'FW'
successor = Node(pos, current_rotation,action,current_node,current_cost)
successors.append(successor)
if (x <15):
pos = []
pos.append(x)
pos.append(y)
new_rotation = 'E'
action='L'
successor = Node(pos, new_rotation,action,current_node,current_cost)
successors.append(successor)
if (x > 0):
pos = []
pos.append(x)
pos.append(y)
new_rotation = 'W'
action = 'R'
successor = Node(pos, new_rotation,action,current_node,current_cost)
successors.append(successor)
elif (current_rotation == "E"):
if (x <15):
pos = []
pos.append(x+1)
pos.append(y)
action = 'FW'
successor = Node(pos, current_rotation,action,current_node,current_cost)
successors.append(successor)
if (y <7):
pos = []
pos.append(x)
pos.append(y)
new_rotation = 'S'
action='R'
successor = Node(pos, new_rotation,action,current_node,current_cost)
successors.append(successor)
if (y >0):
pos = []
pos.append(x)
pos.append(y)
new_rotation = 'N'
action = 'L'
successor = Node(pos, new_rotation,action,current_node,current_cost)
successors.append(successor)
elif (current_rotation == "W"):
if (x > 0):
pos = []
pos.append(x-1)
pos.append(y)
action = 'FW'
successor = Node(pos, current_rotation,action,current_node,current_cost)
successors.append(successor)
if (y >0):
pos = []
pos.append(x)
pos.append(y)
new_rotation = 'N'
action='R'
successor = Node(pos, new_rotation,action,current_node,current_cost)
successors.append(successor)
if (y <7):
pos = []
pos.append(x)
pos.append(y)
new_rotation = 'S'
action = 'L'
successor = Node(pos, new_rotation,action,current_node,current_cost)
successors.append(successor)
return successors
def distance(current_node,target):
return abs(current_node.position[0]-target.position[0])+abs(current_node.position[1]-target.position[1])
#bfs
def bfs(isstate,final):
fringe=deque()
fringe.append(isstate)
path=[]
explored=[]
while(True):
if(len(fringe)==0):
return False
node=fringe.popleft()
if(node.position[0]==final.position[0] and node.position[1]==final.position[1]):
while(node.parent!=None):
path.append(node)
node=node.parent
return path
explored.append(node)
successors=succ(node)
for successor in successors:
if (successor not in fringe and successor not in explored):
fringe.append(successor)
def astar(isstate,final):
fringe=[]
heapq.heappush(fringe,(0,isstate))
path = []
explored = []
total_cost={isstate:0}
while(True):
if (len(fringe) == 0):
return False
a,node =heapq.heappop(fringe)
if (node.position[0] == final.position[0] and node.position[1] == final.position[1]):
while (node.parent != None):
path.append(node)
node = node.parent
return path
explored.append(node)
successors = succ(node)
for successor in successors:
new_cost=total_cost[node]+successor.cost
if (successor not in explored or new_cost<total_cost.get(successor,float('inf'))):
total_cost[successor]=new_cost
p=new_cost+distance(successor,final)
heapq.heappush(fringe,(p,successor))
#drzewko
cols=['Height', 'Width', 'Depth', 'Weight', 'Damage', 'Label_State', 'Content', 'Value']
tree_data_base = pd.read_csv('paczki.csv')
x=tree_data_base.drop(columns='Acceptance')
y=tree_data_base['Acceptance']
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.4)
# Create Decision Tree classifer object
encoder = category_encoders.OrdinalEncoder(cols=cols)
x_train = encoder.fit_transform(x_train)
x_test = encoder.transform(x_test)
clf = DecisionTreeClassifier(criterion='entropy')
clf = clf.fit(x_train,y_train)
#Predict the response for test dataset
y_pred = clf.predict(x_test)
print("Accuracy:",metrics.accuracy_score(y_test, y_pred))
text_tree=tree.export_text(clf)
print(text_tree)
# Train Decision Tree Classifer
#clf = clf.fit(x_train,y_train)
"""def entropy(data):
labels = data.iloc[:, -1] # Ostatnia kolumna zawiera etykiety klas i pomija 1 wiersz bo jest tytulowy
counts = labels.value_counts() #tu zlicza wszystkie opcje
probabilities = counts / len(labels)
entropy = -sum(probabilities * np.log2(probabilities))
return entropy
def information_gain(data, attribute):
total_entropy = entropy(data)
values = data[attribute].unique() #przypisujemy wszystkie opcje danego atrybutu np wyoski/niski/sredni
weighted_entropy = 0
for value in values:
subset = data[data[attribute] == value] # przypisujesz wszystkie wiersze danego value do subset
subset_entropy = entropy(subset)
weighted_entropy += (len(subset) / len(data)) * subset_entropy
return (total_entropy - weighted_entropy)"""
# Main game loop
def game_loop():
init_game()
current=Node(forklift_pos,rotation,'start',None,0)
final=Node([10,5],'N','final',None,0)
path=astar(current,final)
path.reverse()
for node in path:
print(node.action)
i=0
running = True
while running:
for event in pygame.event.get():
if event.type == pygame.QUIT:
running = False
elif event.type == pygame.KEYDOWN:
if event.key == pygame.K_LEFT:
rotate_forklift('L')
load_images()
elif event.key == pygame.K_RIGHT:
rotate_forklift('R')
load_images()
elif event.key == pygame.K_UP:
move_forklift()
elif event.key == pygame.K_SPACE:
handle_freight()
elif event.key == pygame.K_r:
reset_truck_bed_freight()
draw_board()
draw_truck_bed_and_racks()
draw_freight()
draw_forklift_and_freight()
pygame.display.flip()
clock.tick(FPS)
if(i<len(path)):
nod=path[i]
if(nod.action=='FW'):
move_forklift()
elif(nod.action=='L'):
rotate_forklift('L')
load_images()
elif(nod.action=='R'):
rotate_forklift('R')
load_images()
i=i+1
pygame.time.wait(500)
pygame.quit()
sys.exit()
game_loop()