update code to show visualizations

This commit is contained in:
s486797 2024-08-11 20:26:57 +02:00
parent 7f19f6329d
commit 669c39f659
4 changed files with 65 additions and 100 deletions

View File

@ -1,5 +1,5 @@
from flask import Flask, render_template, request, redirect, url_for, send_file, jsonify
from mode_style_transfer import StyleTransferModel, save_image, StyleTransferVisualizer
from flask import Flask, render_template, request, redirect, url_for, send_file, jsonify, g
from mode_style_transfer import StyleTransferModel
from PIL import Image
import io
import torch
@ -8,6 +8,7 @@ import torchvision.transforms as transforms
import os
import matplotlib.pyplot as plt
import base64
import torch.nn as nn
app = Flask(__name__)
@ -20,7 +21,8 @@ loader = transforms.Compose([
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
visualizations = []
# Global variable to store the output tensor
output_tensor = None
def image_loader(image_bytes):
image = Image.open(io.BytesIO(image_bytes))
@ -38,10 +40,10 @@ def image_to_base64(image):
img_io.seek(0)
return base64.b64encode(img_io.getvalue()).decode('utf-8')
@app.route('/', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
global output_tensor
content_image_file = request.files['content_image']
style_image_file = request.files['style_image']
@ -52,7 +54,7 @@ def index():
# Pass the images to the StyleTransferModel
style_transfer = StyleTransferModel(content_image, style_image)
output = style_transfer.run_style_transfer()
output_tensor = output
# Convert the output tensor to an image
output_image = tensor_to_image(output)
@ -63,37 +65,53 @@ def index():
return render_template('index.html')
@app.route('/visualize', methods=['POST'])
@app.route('/visualize', methods=['GET'])
def visualize():
cnn = vgg19(weights=VGG19_Weights.DEFAULT).features.to(device).eval()
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
content_image_bytes = visualizations[0] # The last saved content image
content_image = image_loader(content_image_bytes)
pretrained_model = vgg19(weights=VGG19_Weights.DEFAULT).features.eval().to(device)
style_transfer = StyleTransferModel(content_image, content_image)
# Running the model for visualization purpose
input_img = content_image.clone().requires_grad_(True)
model, _, _ = style_transfer.get_style_model_and_losses(
cnn, cnn_normalization_mean, cnn_normalization_std, content_image, content_image)
# Extract convolutional layers from VGG19
conv_layers = []
for module in pretrained_model.children():
if isinstance(module, nn.Conv2d):
conv_layers.append(module)
layer_visualizations = []
# Pass the resulting image through the convolutional layers and capture feature maps
feature_maps = []
layer_names = []
input_image = output_tensor.clone()
# Run the image through each layer and store the output
for i, layer in enumerate(model):
input_img = layer(input_img)
with torch.no_grad():
output_image = tensor_to_image(input_img.clamp(0, 1))
img_io = io.BytesIO()
output_image.save(img_io, 'JPEG')
img_io.seek(0)
layer_visualizations.append(img_io.getvalue()) # Save the image bytes
return render_template('visualize.html', visualizations=layer_visualizations)
for i, layer in enumerate(conv_layers):
input_image = layer(input_image)
feature_maps.append(input_image)
layer_names.append(f"Layer {i + 1}: {str(layer)}")
# Process and feature maps
processed_feature_maps = []
for feature_map in feature_maps:
feature_map = feature_map.squeeze(0) # Remove the batch dimension
mean_feature_map = torch.mean(feature_map, dim=0).cpu().detach().numpy() # Compute mean across channels
processed_feature_maps.append(mean_feature_map)
# Plot the feature maps
fig = plt.figure(figsize=(20, 20))
for i, fm in enumerate(processed_feature_maps):
ax = fig.add_subplot(4, 4, i + 1) # Adjust grid size as needed
ax.imshow(fm, cmap='viridis') # Display feature map as image
ax.axis("off")
ax.set_title(layer_names[i], fontsize=8)
plt.tight_layout()
# Save the plot to a BytesIO object and encode it as base64
img_io = io.BytesIO()
plt.savefig(img_io, format='png')
img_io.seek(0)
plt.close(fig)
plot_base64 = base64.b64encode(img_io.getvalue()).decode('utf-8')
# Return the image as a base64-encoded string that can be embedded in HTML
return f'<img src="data:image/png;base64,{plot_base64}" alt="Layer Visualizations"/>'
#run the app
if __name__ == '__main__':
app.run(debug=True)

View File

@ -2,7 +2,7 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import io
from PIL import Image
import matplotlib.pyplot as plt
@ -11,6 +11,8 @@ from torchvision.models import vgg19, VGG19_Weights
from torchvision import models
import matplotlib.pyplot as plt
import torchvision.utils as vutils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_default_device(device)
@ -217,42 +219,3 @@ class StyleTransferModel:
return self.input_img
class StyleTransferVisualizer(StyleTransferModel):
def __init__(self, content_img, style_img):
super().__init__(content_img, style_img)
self.model_layers = self.get_model_layers()
def get_model_layers(self):
cnn = models.vgg19(pretrained=True).features.to(self.device).eval()
model_layers = []
i = 0
for layer in cnn.children():
if isinstance(layer, torch.nn.Conv2d):
i += 1
model_layers.append((f'conv_{i}', layer))
return model_layers
def visualize_layers(self):
fig, axs = plt.subplots(len(self.model_layers), 3, figsize=(15, 20))
input_img = self.content_img.clone().detach()
for idx, (name, layer) in enumerate(self.model_layers):
input_img = layer(input_img)
axs[idx, 0].imshow(self.content_img.squeeze(0).permute(1, 2, 0).cpu().numpy())
axs[idx, 0].set_title("Original Image")
axs[idx, 0].axis('off')
axs[idx, 1].imshow(input_img.squeeze(0).permute(1, 2, 0).cpu().detach().numpy())
axs[idx, 1].set_title(f"After {name}")
axs[idx, 1].axis('off')
combined = input_img.clone()
combined += self.style_img.squeeze(0)
axs[idx, 2].imshow(combined.permute(1, 2, 0).cpu().detach().numpy())
axs[idx, 2].set_title(f"Combined (Content + Style) after {name}")
axs[idx, 2].axis('off')
plt.tight_layout()
plt.show()

View File

@ -35,9 +35,8 @@
<div id="result-container">
<h2>Resulting Image:</h2>
<div id="image-container"></div>
<a href="{{ url_for('visualize') }}">
<button>Visualize Layers</button>
</a>
<button id="visualize-btn">Visualize Layers</button>
<div id="visualization-container"></div> <!-- Container for the visualization -->
</div>
<script>
@ -66,6 +65,16 @@
resultContainer.style.display = 'block'; // Show the container
}
});
// JavaScript to handle visualization button click
document.getElementById('visualize-btn').addEventListener('click', async function() {
const response = await fetch('/visualize');
if (response.ok) {
const visualizationContainer = document.getElementById('visualization-container');
visualizationContainer.innerHTML = await response.text(); // Display the plot
}
});
</script>
</body>
</html>

View File

@ -1,25 +0,0 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Visualize Layers</title>
</head>
<body>
<h1>Layer Visualizations</h1>
<p>Select a layer to view the image before and after processing through that layer:</p>
{% for i in range(visualizations|length) %}
<div>
<h2>Layer {{ i + 1 }}</h2>
<button onclick="document.getElementById('img_before').src='{{ url_for(show_image, index=i) }}';">
View Layer {{ i + 1 }}
</button>
</div>
{% endfor %}
<h2>Layer Output:</h2>
<img id="img_before" src="" alt="Layer Image Output" style="max-width: 100%; height: auto;">
</body>
</html>