update code to show visualizations
This commit is contained in:
parent
7f19f6329d
commit
669c39f659
@ -1,5 +1,5 @@
|
||||
from flask import Flask, render_template, request, redirect, url_for, send_file, jsonify
|
||||
from mode_style_transfer import StyleTransferModel, save_image, StyleTransferVisualizer
|
||||
from flask import Flask, render_template, request, redirect, url_for, send_file, jsonify, g
|
||||
from mode_style_transfer import StyleTransferModel
|
||||
from PIL import Image
|
||||
import io
|
||||
import torch
|
||||
@ -8,6 +8,7 @@ import torchvision.transforms as transforms
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
import base64
|
||||
import torch.nn as nn
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
@ -20,7 +21,8 @@ loader = transforms.Compose([
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
|
||||
visualizations = []
|
||||
# Global variable to store the output tensor
|
||||
output_tensor = None
|
||||
|
||||
def image_loader(image_bytes):
|
||||
image = Image.open(io.BytesIO(image_bytes))
|
||||
@ -38,10 +40,10 @@ def image_to_base64(image):
|
||||
img_io.seek(0)
|
||||
return base64.b64encode(img_io.getvalue()).decode('utf-8')
|
||||
|
||||
|
||||
@app.route('/', methods=['GET', 'POST'])
|
||||
def index():
|
||||
if request.method == 'POST':
|
||||
global output_tensor
|
||||
content_image_file = request.files['content_image']
|
||||
style_image_file = request.files['style_image']
|
||||
|
||||
@ -52,7 +54,7 @@ def index():
|
||||
# Pass the images to the StyleTransferModel
|
||||
style_transfer = StyleTransferModel(content_image, style_image)
|
||||
output = style_transfer.run_style_transfer()
|
||||
|
||||
output_tensor = output
|
||||
# Convert the output tensor to an image
|
||||
output_image = tensor_to_image(output)
|
||||
|
||||
@ -63,37 +65,53 @@ def index():
|
||||
|
||||
return render_template('index.html')
|
||||
|
||||
@app.route('/visualize', methods=['POST'])
|
||||
@app.route('/visualize', methods=['GET'])
|
||||
def visualize():
|
||||
cnn = vgg19(weights=VGG19_Weights.DEFAULT).features.to(device).eval()
|
||||
|
||||
cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
|
||||
cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
|
||||
|
||||
content_image_bytes = visualizations[0] # The last saved content image
|
||||
content_image = image_loader(content_image_bytes)
|
||||
pretrained_model = vgg19(weights=VGG19_Weights.DEFAULT).features.eval().to(device)
|
||||
|
||||
style_transfer = StyleTransferModel(content_image, content_image)
|
||||
|
||||
# Running the model for visualization purpose
|
||||
input_img = content_image.clone().requires_grad_(True)
|
||||
|
||||
model, _, _ = style_transfer.get_style_model_and_losses(
|
||||
cnn, cnn_normalization_mean, cnn_normalization_std, content_image, content_image)
|
||||
# Extract convolutional layers from VGG19
|
||||
conv_layers = []
|
||||
for module in pretrained_model.children():
|
||||
if isinstance(module, nn.Conv2d):
|
||||
conv_layers.append(module)
|
||||
|
||||
layer_visualizations = []
|
||||
# Pass the resulting image through the convolutional layers and capture feature maps
|
||||
feature_maps = []
|
||||
layer_names = []
|
||||
input_image = output_tensor.clone()
|
||||
|
||||
# Run the image through each layer and store the output
|
||||
for i, layer in enumerate(model):
|
||||
input_img = layer(input_img)
|
||||
with torch.no_grad():
|
||||
output_image = tensor_to_image(input_img.clamp(0, 1))
|
||||
img_io = io.BytesIO()
|
||||
output_image.save(img_io, 'JPEG')
|
||||
img_io.seek(0)
|
||||
layer_visualizations.append(img_io.getvalue()) # Save the image bytes
|
||||
|
||||
return render_template('visualize.html', visualizations=layer_visualizations)
|
||||
for i, layer in enumerate(conv_layers):
|
||||
input_image = layer(input_image)
|
||||
feature_maps.append(input_image)
|
||||
layer_names.append(f"Layer {i + 1}: {str(layer)}")
|
||||
|
||||
# Process and feature maps
|
||||
processed_feature_maps = []
|
||||
for feature_map in feature_maps:
|
||||
feature_map = feature_map.squeeze(0) # Remove the batch dimension
|
||||
mean_feature_map = torch.mean(feature_map, dim=0).cpu().detach().numpy() # Compute mean across channels
|
||||
processed_feature_maps.append(mean_feature_map)
|
||||
|
||||
# Plot the feature maps
|
||||
fig = plt.figure(figsize=(20, 20))
|
||||
for i, fm in enumerate(processed_feature_maps):
|
||||
ax = fig.add_subplot(4, 4, i + 1) # Adjust grid size as needed
|
||||
ax.imshow(fm, cmap='viridis') # Display feature map as image
|
||||
ax.axis("off")
|
||||
ax.set_title(layer_names[i], fontsize=8)
|
||||
|
||||
plt.tight_layout()
|
||||
|
||||
# Save the plot to a BytesIO object and encode it as base64
|
||||
img_io = io.BytesIO()
|
||||
plt.savefig(img_io, format='png')
|
||||
img_io.seek(0)
|
||||
plt.close(fig)
|
||||
plot_base64 = base64.b64encode(img_io.getvalue()).decode('utf-8')
|
||||
|
||||
# Return the image as a base64-encoded string that can be embedded in HTML
|
||||
return f'<img src="data:image/png;base64,{plot_base64}" alt="Layer Visualizations"/>'
|
||||
|
||||
#run the app
|
||||
if __name__ == '__main__':
|
||||
app.run(debug=True)
|
||||
|
@ -2,7 +2,7 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.optim as optim
|
||||
|
||||
import io
|
||||
from PIL import Image
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
@ -11,6 +11,8 @@ from torchvision.models import vgg19, VGG19_Weights
|
||||
|
||||
from torchvision import models
|
||||
import matplotlib.pyplot as plt
|
||||
import torchvision.utils as vutils
|
||||
|
||||
|
||||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
torch.set_default_device(device)
|
||||
@ -217,42 +219,3 @@ class StyleTransferModel:
|
||||
|
||||
return self.input_img
|
||||
|
||||
|
||||
class StyleTransferVisualizer(StyleTransferModel):
|
||||
def __init__(self, content_img, style_img):
|
||||
super().__init__(content_img, style_img)
|
||||
self.model_layers = self.get_model_layers()
|
||||
|
||||
def get_model_layers(self):
|
||||
cnn = models.vgg19(pretrained=True).features.to(self.device).eval()
|
||||
model_layers = []
|
||||
i = 0
|
||||
for layer in cnn.children():
|
||||
if isinstance(layer, torch.nn.Conv2d):
|
||||
i += 1
|
||||
model_layers.append((f'conv_{i}', layer))
|
||||
return model_layers
|
||||
|
||||
def visualize_layers(self):
|
||||
fig, axs = plt.subplots(len(self.model_layers), 3, figsize=(15, 20))
|
||||
|
||||
input_img = self.content_img.clone().detach()
|
||||
|
||||
for idx, (name, layer) in enumerate(self.model_layers):
|
||||
input_img = layer(input_img)
|
||||
axs[idx, 0].imshow(self.content_img.squeeze(0).permute(1, 2, 0).cpu().numpy())
|
||||
axs[idx, 0].set_title("Original Image")
|
||||
axs[idx, 0].axis('off')
|
||||
|
||||
axs[idx, 1].imshow(input_img.squeeze(0).permute(1, 2, 0).cpu().detach().numpy())
|
||||
axs[idx, 1].set_title(f"After {name}")
|
||||
axs[idx, 1].axis('off')
|
||||
|
||||
combined = input_img.clone()
|
||||
combined += self.style_img.squeeze(0)
|
||||
axs[idx, 2].imshow(combined.permute(1, 2, 0).cpu().detach().numpy())
|
||||
axs[idx, 2].set_title(f"Combined (Content + Style) after {name}")
|
||||
axs[idx, 2].axis('off')
|
||||
|
||||
plt.tight_layout()
|
||||
plt.show()
|
@ -35,9 +35,8 @@
|
||||
<div id="result-container">
|
||||
<h2>Resulting Image:</h2>
|
||||
<div id="image-container"></div>
|
||||
<a href="{{ url_for('visualize') }}">
|
||||
<button>Visualize Layers</button>
|
||||
</a>
|
||||
<button id="visualize-btn">Visualize Layers</button>
|
||||
<div id="visualization-container"></div> <!-- Container for the visualization -->
|
||||
</div>
|
||||
|
||||
<script>
|
||||
@ -66,6 +65,16 @@
|
||||
resultContainer.style.display = 'block'; // Show the container
|
||||
}
|
||||
});
|
||||
|
||||
// JavaScript to handle visualization button click
|
||||
document.getElementById('visualize-btn').addEventListener('click', async function() {
|
||||
const response = await fetch('/visualize');
|
||||
|
||||
if (response.ok) {
|
||||
const visualizationContainer = document.getElementById('visualization-container');
|
||||
visualizationContainer.innerHTML = await response.text(); // Display the plot
|
||||
}
|
||||
});
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
||||
|
@ -1,25 +0,0 @@
|
||||
<!DOCTYPE html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<title>Visualize Layers</title>
|
||||
</head>
|
||||
<body>
|
||||
<h1>Layer Visualizations</h1>
|
||||
<p>Select a layer to view the image before and after processing through that layer:</p>
|
||||
|
||||
{% for i in range(visualizations|length) %}
|
||||
<div>
|
||||
<h2>Layer {{ i + 1 }}</h2>
|
||||
<button onclick="document.getElementById('img_before').src='{{ url_for(show_image, index=i) }}';">
|
||||
View Layer {{ i + 1 }}
|
||||
</button>
|
||||
</div>
|
||||
{% endfor %}
|
||||
|
||||
<h2>Layer Output:</h2>
|
||||
<img id="img_before" src="" alt="Layer Image Output" style="max-width: 100%; height: auto;">
|
||||
</body>
|
||||
</html>
|
||||
|
Loading…
Reference in New Issue
Block a user