neural_style/neural_style_app/mode_style_transfer.py
2024-10-20 21:02:21 +02:00

221 lines
8.0 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import io
from PIL import Image
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from torchvision.models import vgg19, VGG19_Weights
from torchvision import models
import matplotlib.pyplot as plt
import torchvision.utils as vutils
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_default_device(device)
def image_loader(image):
#image = Image.open(image_name)
# fake batch dimension required to fit network's input dimensions
imsize = 512 if torch.cuda.is_available() else 128 # use small size if no GPU
loader = transforms.Compose([
transforms.Resize(imsize), # scale imported image
transforms.ToTensor()]) # transform it into a torch tensor
image = loader(image).unsqueeze(0)
return image.to(device, torch.float)
def save_image(tensor, path):
image = tensor.clone().detach()
image = image.squeeze(0)
image = transforms.ToPILImage()(image)
image.save(path)
class ContentLoss(nn.Module):
def __init__(self, target,):
super(ContentLoss, self).__init__()
# we 'detach' the target content from the tree used
# to dynamically compute the gradient: this is a stated value,
# not a variable. Otherwise the forward method of the criterion
# will throw an error.
self.target = target.detach()
def forward(self, input):
self.loss = F.mse_loss(input, self.target)
return input
def gram_matrix(input):
a, b, c, d = input.size() # a=batch size(=1)
# b=number of feature maps
# (c,d)=dimensions of a f. map (N=c*d)
features = input.view(a * b, c * d) # resize F_XL into \hat F_XL
G = torch.mm(features, features.t()) # compute the gram product
# we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(a * b * c * d)
class StyleLoss(nn.Module):
def __init__(self, target_feature):
super(StyleLoss, self).__init__()
self.target = gram_matrix(target_feature).detach()
def forward(self, input):
G = gram_matrix(input)
self.loss = F.mse_loss(G, self.target)
return input
#cnn = vgg19(weights=VGG19_Weights.DEFAULT).features.eval()
#cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406])
#cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225])
# create a module to normalize input image so we can easily put it in a
# ``nn.Sequential``
class Normalization(nn.Module):
def __init__(self, mean, std):
super(Normalization, self).__init__()
# .view the mean and std to make them [C x 1 x 1] so that they can
# directly work with image Tensor of shape [B x C x H x W].
# B is batch size. C is number of channels. H is height and W is width.
self.mean = torch.tensor(mean).view(-1, 1, 1)
self.std = torch.tensor(std).view(-1, 1, 1)
def forward(self, img):
# normalize ``img``
return (img - self.mean) / self.std
# desired depth layers to compute style/content losses :
content_layers_default = ['conv_4']
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
style_img, content_img,
content_layers=content_layers_default,
style_layers=style_layers_default):
# normalization module
normalization = Normalization(normalization_mean, normalization_std)
# just in order to have an iterable access to or list of content/style
# losses
content_losses = []
style_losses = []
# assuming that ``cnn`` is a ``nn.Sequential``, so we make a new ``nn.Sequential``
# to put in modules that are supposed to be activated sequentially
model = nn.Sequential(normalization)
i = 0 # increment every time we see a conv
for layer in cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = 'conv_{}'.format(i)
elif isinstance(layer, nn.ReLU):
name = 'relu_{}'.format(i)
# The in-place version doesn't play very nicely with the ``ContentLoss``
# and ``StyleLoss`` we insert below. So we replace with out-of-place
# ones here.
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = 'pool_{}'.format(i)
elif isinstance(layer, nn.BatchNorm2d):
name = 'bn_{}'.format(i)
else:
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
model.add_module(name, layer)
if name in content_layers:
# add content loss:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module("content_loss_{}".format(i), content_loss)
content_losses.append(content_loss)
if name in style_layers:
# add style loss:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module("style_loss_{}".format(i), style_loss)
style_losses.append(style_loss)
# now we trim off the layers after the last content and style losses
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
def get_input_optimizer(input_img):
# this line to show that input is a parameter that requires a gradient
optimizer = optim.LBFGS([input_img])
return optimizer
class StyleTransferModel:
def __init__(self, content_img, style_img, num_steps=300, style_weight=1000000, content_weight=1):
self.content_img = content_img
self.style_img = style_img.resize(content_img.size)
self.style_img = image_loader(self.style_img)
self.content_img = image_loader(self.content_img)
self.input_img = self.content_img.clone()
self.num_steps = num_steps
self.style_weight = style_weight
self.content_weight = content_weight
self.cnn = vgg19(weights=VGG19_Weights.DEFAULT).features.to(device).eval()
self.cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
self.cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
def run_style_transfer(self):
print('Building the style transfer model..')
model, style_losses, content_losses = get_style_model_and_losses(
self.cnn, self.cnn_normalization_mean, self.cnn_normalization_std,
self.style_img, self.content_img)
self.input_img.requires_grad_(True)
model.eval()
model.requires_grad_(False)
optimizer = get_input_optimizer(self.input_img)
print('Optimizing..')
run = [0]
while run[0] <= self.num_steps:
def closure():
with torch.no_grad():
self.input_img.clamp_(0, 1)
optimizer.zero_grad()
model(self.input_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= self.style_weight
content_score *= self.content_weight
loss = style_score + content_score
loss.backward()
run[0] += 1
if run[0] % 50 == 0:
print(f"run {run[0]}:")
print(f'Style Loss : {style_score.item():4f} Content Loss: {content_score.item():4f}')
print()
return style_score + content_score
optimizer.step(closure)
with torch.no_grad():
self.input_img.clamp_(0, 1)
return self.input_img