diff --git a/Jenkinsfile b/Jenkinsfile new file mode 100644 index 0000000..acef5e1 --- /dev/null +++ b/Jenkinsfile @@ -0,0 +1,25 @@ +node { + stage('Preparation') { + properties([ + parameters([ + string( + defaultValue: 'Hello World!', + description: 'Tekst do wyświetlenie', + name: 'INPUT_TEXT', + trim: false + ) + ]) + ]) + } + stage('Hello') { + //Wypisz wartość parametru w konsoli (To nie jest polecenie bash, tylko groovy!) + echo "INPUT_TEXT: ${INPUT_TEXT}" + //Wywołaj w konsoli komendę "figlet", która generuje ASCI-art + sh "figlet \"${INPUT_TEXT}\" | tee output.txt" + } + stage('Goodbye') { + echo 'Goodbye!' + //Zarchiwizuj wynik + archiveArtifacts 'output.txt' + } +} \ No newline at end of file diff --git a/main.py b/main.py index 87c2101..f28b7a2 100644 --- a/main.py +++ b/main.py @@ -12,18 +12,12 @@ with zipfile.ZipFile('./data/netflix-shows.zip', 'r') as zip_ref: netflix = pd.read_csv('./data/netflix_titles.csv') -netflix['release_year'] = (netflix['release_year'] - netflix['release_year'].min()) / (netflix['release_year'].max() - netflix['release_year'].min()) - netflix.dropna(inplace=True) random_seed = 42 train_data, test_data = train_test_split(netflix, test_size=0.2, random_state=random_seed) train_data, dev_data = train_test_split(train_data, test_size=0.25, random_state=random_seed) -train_data['release_year'] = (train_data['release_year'] - train_data['release_year'].min()) / (train_data['release_year'].max() - train_data['release_year'].min()) -dev_data['release_year'] = (dev_data['release_year'] - dev_data['release_year'].min()) / (dev_data['release_year'].max() - dev_data['release_year'].min()) -test_data['release_year'] = (test_data['release_year'] - test_data['release_year'].min()) / (test_data['release_year'].max() - test_data['release_year'].min()) - train_stats = train_data.describe(include='all') print(f"\nTraining set statistics:\n{train_stats}") dev_stats = dev_data.describe(include='all')