import pandas as pd import tensorflow as tf from keras.models import Sequential from keras.layers import Dense from keras import utils import os EPOCHS = int(os.environ['EPOCHS']) if EPOCHS <= 0: EPOCHS = 1000 X_train = pd.read_csv('./X_train.csv', engine = 'python', encoding = 'ISO-8859-1', sep=',') X_val = pd.read_csv('./X_val.csv', engine = 'python', encoding = 'ISO-8859-1', sep=',') Y_train = pd.read_csv('./Y_train.csv', engine = 'python', encoding = 'ISO-8859-1', sep=',') Y_val = pd.read_csv('./Y_val.csv', engine = 'python', encoding = 'ISO-8859-1', sep=',') Y_train = utils.to_categorical(Y_train) Y_val = utils.to_categorical(Y_val) model = Sequential( [ Dense(100, input_dim=X_train.shape[1], activation='relu'), Dense(70, activation='relu'), Dense(50, activation='relu'), Dense(4, activation='softmax') ], name = "Powerlifters_model" ) model.compile( loss=tf.keras.losses.CategoricalCrossentropy(), optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy']) model.fit( X_train,Y_train, epochs = EPOCHS, validation_data=(X_val, Y_val) ) model.save('model')