import os from sklearn.model_selection import train_test_split import pandas as pd pd.set_option('display.max_columns', 100) DATA_DIRECTORY = './ium_z486867/' CSV_NAME = DATA_DIRECTORY + 'openpowerlifting.csv' def process_data(csv_name): CUTOFF = int(os.environ['CUTOFF']) powerlifting_data = pd.read_csv(csv_name, engine='python', encoding='ISO-8859-1', sep=',') powerlifting_data.dropna() powerlifting_data.drop(columns=["Squat4Kg", "Bench4Kg", "Deadlift4Kg"], inplace=True) powerlifting_data.sample(CUTOFF) X, Y = powerlifting_data, powerlifting_data X_train, X_temp, Y_train, Y_temp = train_test_split(X, Y, test_size=0.3, random_state=1) X_dev, X_test, Y_dev, Y_test = train_test_split(X_temp, Y_temp, test_size=0.3, random_state=1) X_train.to_csv('X_train.csv', index=False) X_dev.to_csv('X_dev.csv', index=False) X_test.to_csv('X_test.csv', index=False) process_data(CSV_NAME)