76 lines
3.0 KiB
Python
76 lines
3.0 KiB
Python
import os
|
|
|
|
from kaggle.api.kaggle_api_extended import KaggleApi
|
|
import zipfile
|
|
from sklearn.model_selection import train_test_split
|
|
import pandas as pd
|
|
import numpy as np
|
|
from sklearn.preprocessing import MinMaxScaler
|
|
pd.set_option('display.max_columns', 100)
|
|
|
|
|
|
DATA_DIRECTORY = './data'
|
|
|
|
CSV_NAME = DATA_DIRECTORY + '/openpowerlifting.csv'
|
|
def download_data_from_kaggle():
|
|
api = KaggleApi()
|
|
api.authenticate()
|
|
api.dataset_download_files('dansbecker/powerlifting-database', path=DATA_DIRECTORY)
|
|
def extract_data_from_zip():
|
|
for file_name in os.listdir(DATA_DIRECTORY):
|
|
if file_name.endswith(".zip"):
|
|
file_path = os.path.join(DATA_DIRECTORY, file_name)
|
|
with zipfile.ZipFile(file_path, "r") as zip_ref:
|
|
zip_ref.extractall(DATA_DIRECTORY)
|
|
print(f"The file {file_name} has been unzipped.")
|
|
def process_data(csv_name):
|
|
# Read in the data and drop the specified columns
|
|
data = pd.read_csv(csv_name)
|
|
data.drop(columns=["Squat4Kg", "Bench4Kg", "Deadlift4Kg"], inplace=True)
|
|
data.dropna(inplace=True)
|
|
|
|
# Remove negative values
|
|
numeric_cols = data.select_dtypes(include=np.number).columns
|
|
data[numeric_cols] = data[numeric_cols].apply(lambda x: x.clip(lower=0)).dropna()
|
|
|
|
# Split the data into train, dev, and test sets if not already done
|
|
if "train" not in data.columns or "dev" not in data.columns or "test" not in data.columns:
|
|
data_train, data_devtest = train_test_split(data, test_size=0.2, random_state=42, stratify=data["Division"])
|
|
data_dev, data_test = train_test_split(data_devtest, test_size=0.5, random_state=42, stratify=data_devtest["Division"])
|
|
data_train["Set"] = "train"
|
|
data_dev["Set"] = "dev"
|
|
data_test["Set"] = "test"
|
|
data = pd.concat([data_train, data_dev, data_test], ignore_index=True)
|
|
|
|
# Collect and print statistics for the data and its subsets
|
|
print("Data Set Statistics:")
|
|
print("Size: {}".format(len(data)))
|
|
print("Avg values:")
|
|
print(data.mean())
|
|
print("Min values:")
|
|
print(data.min())
|
|
print("Max values:")
|
|
print(data.max())
|
|
print("Standard deviations:")
|
|
print(data.std())
|
|
print("Median values:")
|
|
print(data.median())
|
|
|
|
# Compute the frequency distribution of examples for individual classes
|
|
print("\nFrequency distribution of examples for individual classes:")
|
|
print(data["Class"].value_counts())
|
|
|
|
# Normalize the data to the range of 0.0 - 1.0
|
|
scaler = MinMaxScaler()
|
|
data.iloc[:, :-2] = scaler.fit_transform(data.iloc[:, :-2])
|
|
|
|
# Clear the collection of artifacts (e.g. blank lines, examples with invalid values)
|
|
data.dropna(inplace=True)
|
|
|
|
# Clear the remaining columns from negative and empty values
|
|
data[data.columns[:-2]] = data[data.columns[:-2]].apply(lambda x: x.clip(lower=0))
|
|
|
|
return data
|
|
# download_data_from_kaggle()
|
|
# extract_data_from_zip()
|
|
process_data(CSV_NAME) |