ium_z487173/train.py
2023-05-22 21:15:46 +02:00

57 lines
1.5 KiB
Python

import pandas as pd
import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense
from keras import utils
import os
EPOCHS = int(os.environ['EPOCHS'])
if EPOCHS <= 0:
EPOCHS = 1000
X_train = pd.read_csv('./X_train.csv',
engine = 'python',
encoding = 'ISO-8859-1',
sep=',')
X_val = pd.read_csv('./X_val.csv',
engine = 'python',
encoding = 'ISO-8859-1',
sep=',')
Y_train = pd.read_csv('./Y_train.csv',
engine = 'python',
encoding = 'ISO-8859-1',
sep=',')
Y_val = pd.read_csv('./Y_val.csv',
engine = 'python',
encoding = 'ISO-8859-1',
sep=',')
Y_train = utils.to_categorical(Y_train)
Y_val = utils.to_categorical(Y_val)
model = Sequential(
[
Dense(100, input_dim=X_train.shape[1], activation='relu'),
Dense(70, activation='relu'),
Dense(50, activation='relu'),
Dense(4, activation='softmax')
], name = "Players_model"
)
model.compile(
loss=tf.keras.losses.CategoricalCrossentropy(),
optimizer=tf.keras.optimizers.Adam(),
validation_data = (X_val, Y_val),
metrics=['accuracy'])
model.fit(
X_train,Y_train,
epochs = EPOCHS,
validation_data=(X_val, Y_val)
)
model.save('model')