ium_487176/zad1.py

273 lines
4.3 KiB
Python
Raw Normal View History

#!/usr/bin/env python
# coding: utf-8
# In[2]:
import pandas as pd
import sklearn.model_selection
from datasets import load_dataset
# In[3]:
dataset = load_dataset("mstz/wine", "wine")
# In[4]:
dataset["train"]
# In[5]:
wine_dataset = pd.DataFrame(dataset["train"])
# In[6]:
wine_dataset.head()# podgląd danych
# In[7]:
wine_dataset.describe(include='all')
# In[8]:
wine_dataset["is_red"].value_counts().plot(kind="bar")
# In[9]:
wine_dataset["fixed_acidity"].std()
# In[10]:
import numpy as np
np.where(pd.isnull(wine_dataset))## sprawdzanie czy istnieją puste wartości
# In[11]:
for column in wine_dataset.columns:
wine_dataset[column] = wine_dataset[column] / wine_dataset[column].abs().max() # normalizacja
# In[12]:
wine_dataset.describe(include='all') # sprawdzanie wartości po znormalizowaniu
# In[13]:
wine_dataset["fixed_acidity"].nlargest(10) #sprawdza czy najwyższe wartości mają sens
# In[14]:
from sklearn.model_selection import train_test_split
wine_train, wine_test = sklearn.model_selection.train_test_split(wine_dataset, test_size=0.1, random_state=1, stratify=wine_dataset["is_red"])
wine_train["is_red"].value_counts()
# podzielenie na train i test
# In[15]:
wine_test["is_red"].value_counts()
# In[16]:
wine_test, wine_val = sklearn.model_selection.train_test_split(wine_test, test_size=0.5, random_state=1, stratify=wine_test["is_red"]) # podzielenie na test i validation
# In[17]:
wine_test["is_red"].value_counts()
# In[18]:
wine_val["is_red"].value_counts()
# In[19]:
import seaborn as sns
sns.set_theme()
# In[20]:
len(wine_dataset.columns)
# In[ ]:
# In[21]:
#sns.pairplot(data=wine_dataset, hue="is_red")
# In[22]:
wine_test.describe()
# In[23]:
wine_train.describe()
# In[24]:
wine_val.describe()
# In[25]:
import torch
from torch import nn
from torch.utils.data import DataLoader, Dataset
# In[26]:
class TabularDataset(Dataset):
def __init__(self, data):
self.data = data.values.astype('float32')
def __getitem__(self, index):
x = torch.tensor(self.data[index, :-1])
y = torch.tensor(self.data[index, -1])
return x, y
def __len__(self):
return len(self.data)
# In[27]:
batch_size = 64
train_dataset = TabularDataset(wine_train)
train_dataloader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = TabularDataset(wine_test)
test_dataloader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# In[ ]:
# In[28]:
class TabularModel(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim):
super(TabularModel, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_dim, output_dim)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
out = self.softmax(out)
return out
# In[29]:
input_dim = wine_train.shape[1] - 1
hidden_dim = 32
output_dim = 2
model = TabularModel(input_dim, hidden_dim, output_dim)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
# In[30]:
model = TabularModel(input_dim=len(wine_train.columns)-1, hidden_dim=32, output_dim=2)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
# In[31]:
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_dataloader, 0):
inputs, labels = data
labels = labels.type(torch.LongTensor)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
# Print the loss every 1000 mini-batches
if (epoch%2) == 0:
print(f'Epoch {epoch + 1}, loss: {running_loss / len(train_dataloader):.4f}')
print('Finished Training')
# In[32]:
correct = 0
total = 0
with torch.no_grad():
for data in test_dataloader:
inputs, labels = data
outputs = model(inputs.float())
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%' % (100 * correct / total))