added mlflow logging

This commit is contained in:
Maciej Tyczynski 2023-06-09 15:44:54 +02:00
parent 392bed7268
commit 3ee6135028

70
zad1.py
View File

@ -7,16 +7,11 @@ import numpy as np
import logging
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
# logging.basicConfig(level=logging.WARN)
# logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger(__name__)
# mlflow.set_tracking_uri("http://localhost:5000")
# mlflow.set_experiment("s123456")
# def eval_metrics(actual, pred):
# rmse = np.sqrt(mean_squared_error(actual, pred))
# mae = mean_absolute_error(actual, pred)
# r2 = r2_score(actual, pred)
# return rmse, mae, r2
mlflow.set_tracking_uri("http://localhost:5000")
mlflow.set_experiment("s487176")
import requests
@ -90,6 +85,12 @@ class TabularModel(nn.Module):
out = self.fc2(out)
out = self.softmax(out)
return out
def predict(self, x):
with torch.no_grad():
output = self.forward(x)
_, predicted = torch.max(output, 1)
return predicted
input_dim = wine_train.shape[1] - 1
hidden_dim = 32
@ -98,27 +99,31 @@ model = TabularModel(input_dim, hidden_dim, output_dim)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters())
model = TabularModel(input_dim=len(wine_train.columns)-1, hidden_dim=32, output_dim=2)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01)
num_epochs = 10
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_dataloader, 0):
inputs, labels = data
labels = labels.type(torch.LongTensor)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
lr = 0.01
alpha = 0.01
model = TabularModel(input_dim=len(wine_train.columns)-1, hidden_dim=hidden_dim, output_dim=output_dim)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=lr, weight_decay=alpha)
with mlflow.start_run():
mlflow.log_params({"learning rate":lr,"alpha":alpha})
# Print the loss every 1000 mini-batches
if (epoch%2) == 0:
print(f'Epoch {epoch + 1}, loss: {running_loss / len(train_dataloader):.4f}')
for epoch in range(num_epochs):
running_loss = 0.0
for i, data in enumerate(train_dataloader, 0):
inputs, labels = data
labels = labels.type(torch.LongTensor)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
# Print the loss every 1000 mini-batches
if (epoch%2) == 0:
print(f'Epoch {epoch + 1}, loss: {running_loss / len(train_dataloader):.4f}')
print('Finished Training')
@ -128,9 +133,12 @@ total = 0
with torch.no_grad():
for data in test_dataloader:
inputs, labels = data
outputs = model(inputs.float())
_, predicted = torch.max(outputs.data, 1)
predicted = model.predict(inputs.float())
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%' % (100 * correct / total))
accuracy= 100 * correct / total
print('Accuracy on test set: %d %%' % accuracy)
mlflow.log_metric("test_accuracy", accuracy)
mlflow.sklearn.log_model(model, "model")