From a526a45cd74793dfae7eec9b3a003c3b75c3c326 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Maciej=20Tyczy=C5=84ski?= Date: Sat, 25 Mar 2023 11:59:49 +0100 Subject: [PATCH] initial commit --- zad1.ipynb | 1621 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1621 insertions(+) create mode 100644 zad1.ipynb diff --git a/zad1.ipynb b/zad1.ipynb new file mode 100644 index 0000000..428503a --- /dev/null +++ b/zad1.ipynb @@ -0,0 +1,1621 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd\n", + "import sklearn.model_selection" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Found cached dataset wine (C:/Users/s487176/.cache/huggingface/datasets/mstz___wine/wine/1.0.0/0913b614badc418a000d75d098776831f39ebf5ee208ecd3cfad4d5db1418d76)\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "a8f1b9db0c8b41e1904e16e22ae351e0", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + " 0%| | 0/1 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcoholqualitycolor
07.40.700.001.90.07611.034.00.99783.510.569.450
17.80.880.002.60.09825.067.00.99683.200.689.850
27.80.760.042.30.09215.054.00.99703.260.659.850
311.20.280.561.90.07517.060.00.99803.160.589.860
47.40.700.001.90.07611.034.00.99783.510.569.450
\n", + "" + ], + "text/plain": [ + " fixed_acidity volatile_acidity citric_acid residual_sugar chlorides \\\n", + "0 7.4 0.70 0.00 1.9 0.076 \n", + "1 7.8 0.88 0.00 2.6 0.098 \n", + "2 7.8 0.76 0.04 2.3 0.092 \n", + "3 11.2 0.28 0.56 1.9 0.075 \n", + "4 7.4 0.70 0.00 1.9 0.076 \n", + "\n", + " free_sulfur_dioxide total_sulfur_dioxide density pH sulphates \\\n", + "0 11.0 34.0 0.9978 3.51 0.56 \n", + "1 25.0 67.0 0.9968 3.20 0.68 \n", + "2 15.0 54.0 0.9970 3.26 0.65 \n", + "3 17.0 60.0 0.9980 3.16 0.58 \n", + "4 11.0 34.0 0.9978 3.51 0.56 \n", + "\n", + " alcohol quality color \n", + "0 9.4 5 0 \n", + "1 9.8 5 0 \n", + "2 9.8 5 0 \n", + "3 9.8 6 0 \n", + "4 9.4 5 0 " + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_dataset.head()# podgląd danych" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcoholqualitycolor
count6497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.000000
mean7.2153070.3396660.3186335.4432350.05603430.525319115.7445740.9946973.2185010.53126810.4918015.8183780.753886
std1.2964340.1646360.1453184.7578040.03503417.74940056.5218550.0029990.1607870.1488061.1927120.8732550.430779
min3.8000000.0800000.0000000.6000000.0090001.0000006.0000000.9871102.7200000.2200008.0000003.0000000.000000
25%6.4000000.2300000.2500001.8000000.03800017.00000077.0000000.9923403.1100000.4300009.5000005.0000001.000000
50%7.0000000.2900000.3100003.0000000.04700029.000000118.0000000.9948903.2100000.51000010.3000006.0000001.000000
75%7.7000000.4000000.3900008.1000000.06500041.000000156.0000000.9969903.3200000.60000011.3000006.0000001.000000
max15.9000001.5800001.66000065.8000000.611000289.000000440.0000001.0389804.0100002.00000014.9000009.0000001.000000
\n", + "
" + ], + "text/plain": [ + " fixed_acidity volatile_acidity citric_acid residual_sugar \\\n", + "count 6497.000000 6497.000000 6497.000000 6497.000000 \n", + "mean 7.215307 0.339666 0.318633 5.443235 \n", + "std 1.296434 0.164636 0.145318 4.757804 \n", + "min 3.800000 0.080000 0.000000 0.600000 \n", + "25% 6.400000 0.230000 0.250000 1.800000 \n", + "50% 7.000000 0.290000 0.310000 3.000000 \n", + "75% 7.700000 0.400000 0.390000 8.100000 \n", + "max 15.900000 1.580000 1.660000 65.800000 \n", + "\n", + " chlorides free_sulfur_dioxide total_sulfur_dioxide density \\\n", + "count 6497.000000 6497.000000 6497.000000 6497.000000 \n", + "mean 0.056034 30.525319 115.744574 0.994697 \n", + "std 0.035034 17.749400 56.521855 0.002999 \n", + "min 0.009000 1.000000 6.000000 0.987110 \n", + "25% 0.038000 17.000000 77.000000 0.992340 \n", + "50% 0.047000 29.000000 118.000000 0.994890 \n", + "75% 0.065000 41.000000 156.000000 0.996990 \n", + "max 0.611000 289.000000 440.000000 1.038980 \n", + "\n", + " pH sulphates alcohol quality color \n", + "count 6497.000000 6497.000000 6497.000000 6497.000000 6497.000000 \n", + "mean 3.218501 0.531268 10.491801 5.818378 0.753886 \n", + "std 0.160787 0.148806 1.192712 0.873255 0.430779 \n", + "min 2.720000 0.220000 8.000000 3.000000 0.000000 \n", + "25% 3.110000 0.430000 9.500000 5.000000 1.000000 \n", + "50% 3.210000 0.510000 10.300000 6.000000 1.000000 \n", + "75% 3.320000 0.600000 11.300000 6.000000 1.000000 \n", + "max 4.010000 2.000000 14.900000 9.000000 1.000000 " + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_dataset.describe(include='all')" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAAGbCAYAAAAx9RHcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAeNklEQVR4nO3df0xV9/3H8de9XH4J3g5RuLSG1uHEkW1F6zWQDMdMvqzZ3BZGl2URs7pqWWdGh2Omi/SXzq5LUTubudaotaYSZwbp1nRZTU2WtYtSYO2aFVmrVWM7gVIptyJwy733+4e5d15tC5dJL2/u85EY5ZzP+eRjOYc+PfdwcYRCoZAAAACMcsZ7AQAAAP8LYgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0V7wX8GkIhUIKBnmj40ThdDr4fAPTFNd34nA6HXI4HOMamxAxEwyGdP78YLyXgU+By+VUVlaGfL6LGh0Nxns5AK4hru/EMmtWhpKSxhczvMwEAABMI2YAAIBpxAwAADAt5pjp6elRYWHhVb9aWlokScePH1d1dbWKi4u1fPly7d+/P+r4YDCoHTt2qKysTMXFxVq7dq3Onj0bNWasOQAAAMJifgC4q6tLqampeuGFF6KeMp45c6b6+/u1evVqLV++XA8++KBeffVVPfjgg8rIyFBVVZUkaefOnWpqatLDDz8sj8ejRx55RGvWrNGzzz6rlJSUcc0BAAAQFnPMvPHGG7rpppuUk5Nz1b6nnnpKycnJ2rRpk1wulwoKCnTmzBnt2rVLVVVV8vv92rt3r+rr61VeXi5J2r59u8rKynT48GGtWLFChw4d+sQ5AAAALhfzy0z//ve/VVBQ8JH72tvbtXTpUrlc/22kkpISnT59Wn19ferq6tLg4KBKS0sj+91ut4qKitTW1jauOQAAAC43oTszWVlZWrlypU6dOqUbb7xRd911l5YtW6bu7m4tWLAganz4Ds65c+fU3d0tScrLy7tqTHjfWHPMnj071iVLuvT+BJj+kpKcUb8DmD64vvFxYoqZ0dFRvfXWW5o/f77uueceZWZm6rnnntOdd96pJ598UsPDw0pJSYk6JjU1VZI0MjKioaEhSfrIMQMDA5I05hwT4XQ6lJWVMaFjYZPbnR7vJQCYJFzfuFJMMeNyudTa2qqkpCSlpaVJkr7whS/ozTff1J49e5SWlia/3x91TDhAZsyYETnG7/dH/hwek55+6eQca46JCAZD8vkuTuhY2JKU5JTbnS6fb0iBAO8QCkwnXN+Jxe1OH/dduJhfZsrIuPoOx+c+9zm99NJL8ng86u3tjdoX/jg3N1ejo6ORbfn5+VFjCgsLJWnMOSaKt75OLIFAkM85ME1xfeNKMb3w+Oabb2rx4sVqbW2N2v6vf/1L8+fPl9frVUdHhwKBQGTfsWPHNG/ePGVnZ2vhwoXKzMyMOt7n86mzs1Ner1eSxpwDAADgcjHFTEFBgT772c9q06ZNam9v18mTJ/WrX/1Kr776qu666y5VVVXpwoUL2rhxo06cOKGWlhbt27dPNTU1ki49K1NdXa3GxkYdOXJEXV1dqqurk8fjUUVFhSSNOQcAAMDlHKFQKKafpd7X16etW7fqxRdflM/nU1FRkerr67VkyRJJ0muvvaYtW7aos7NTc+bM0Q9/+ENVV1dHjg8EAtq2bZtaWlo0PDwsr9er++67T3Pnzo2MGWuOWAUCQX5qdoII/1Td/v5BbkMD0wzXd2K59FOzx3fPJeaYsShRY8bpdMjpHN+PT58uEvkBwWAwpGBw2l/OSGDETGKJJWZifgAYNjidDn3mMzMS9v0YEvFbNwOBoN5//yJBAyDhEDPTlNPpUFKSU40HOvR2zwfxXg4m2dzcmapfeYucTgcxAyDhEDPT3Ns9H+jkOwPxXgYAAJMmMV+DAAAA0wYxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYNqEY+bUqVNatGiRWlpaItuOHz+u6upqFRcXa/ny5dq/f3/UMcFgUDt27FBZWZmKi4u1du1anT17NmrMWHMAAABcbkIx8+GHH6q+vl4XL16MbOvv79fq1auVn5+v5uZmrVu3To2NjWpubo6M2blzp5qamrR582YdPHhQwWBQa9askd/vH/ccAAAAl3NN5KDHHntMmZmZUdsOHTqk5ORkbdq0SS6XSwUFBTpz5ox27dqlqqoq+f1+7d27V/X19SovL5ckbd++XWVlZTp8+LBWrFgx5hwAAABXivnOTFtbm37/+9/r4Ycfjtre3t6upUuXyuX6bx+VlJTo9OnT6uvrU1dXlwYHB1VaWhrZ73a7VVRUpLa2tnHNAQAAcKWY7sz4fD5t2LBBDQ0NysvLi9rX3d2tBQsWRG3LycmRJJ07d07d3d2SdNVxOTk5kX1jzTF79uxYlhvF5UqsZ52TkhLr74tL+LxjOguf35znuFJMMfPAAw9o0aJF+uY3v3nVvuHhYaWkpERtS01NlSSNjIxoaGhIkj5yzMDAwLjmmCin06GsrIwJHw9Y4Xanx3sJwKTjPMeVxh0zzzzzjNrb2/Xss89+5P60tLTIg7xh4QCZMWOG0tLSJEl+vz/y5/CY9PT0cc0xUcFgSD7fxbEHTiNJSU4u+ATk8w0pEAjGexnApAh/XeM8Twxud/q478KNO2aam5v13nvvRR7eDbv//vv15z//WR6PR729vVH7wh/n5uZqdHQ0si0/Pz9qTGFhoSSNOcf/YnSUEx/TXyAQ5FzHtMd5jiuNO2YaGxs1PDwcta2iokK1tbX61re+pT/+8Y86ePCgAoGAkpKSJEnHjh3TvHnzlJ2drZkzZyozM1Otra2RmPH5fOrs7FR1dbUkyev1fuIcAAAAVxr3U1S5ubm68cYbo35JUnZ2tnJzc1VVVaULFy5o48aNOnHihFpaWrRv3z7V1NRIuvSsTHV1tRobG3XkyBF1dXWprq5OHo9HFRUVkjTmHAAAAFea0PvMfJTs7Gzt3r1bW7ZsUWVlpebMmaMNGzaosrIyMqa2tlajo6NqaGjQ8PCwvF6v9uzZo+Tk5HHPAQAAcDlHKBQKxXsRky0QCOr8+cF4L+NT5XI5lZWVoZ9u+6tOvjMQ7+VgkhXccJ0eXV+u/v5BniXAtBX+usZ5nhhmzcoY9wPAfLM+AAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJgWc8y89957+vnPf66SkhItWrRId955p06ePBnZf/z4cVVXV6u4uFjLly/X/v37o44PBoPasWOHysrKVFxcrLVr1+rs2bNRY8aaAwAAICzmmFm3bp3OnDmjXbt26Q9/+IPS0tJ0++23a2hoSP39/Vq9erXy8/PV3NysdevWqbGxUc3NzZHjd+7cqaamJm3evFkHDx5UMBjUmjVr5Pf7JWlccwAAAIS5Yhk8MDCgG264QTU1NVqwYIEk6cc//rG+/e1v680339TRo0eVnJysTZs2yeVyqaCgIBI+VVVV8vv92rt3r+rr61VeXi5J2r59u8rKynT48GGtWLFChw4d+sQ5AAAALhfTnZnrrrtOW7dujYTM+fPntW/fPnk8Hs2fP1/t7e1aunSpXK7/NlJJSYlOnz6tvr4+dXV1aXBwUKWlpZH9brdbRUVFamtrk6Qx5wAAALhcTHdmLnfvvffq0KFDSklJ0e9+9zvNmDFD3d3dkdAJy8nJkSSdO3dO3d3dkqS8vLyrxoT3jTXH7NmzJ7RelyuxnnVOSkqsvy8u4fOO6Sx8fnOe40oTjpkf/OAH+t73vqcDBw5o3bp1ampq0vDwsFJSUqLGpaamSpJGRkY0NDQkSR85ZmBgQJLGnGMinE6HsrIyJnQsYInbnR7vJQCTjvMcV5pwzMyfP1+StGXLFv3zn//U008/rbS0tMiDvGHhAJkxY4bS0tIkSX6/P/Ln8Jj09Esn51hzTEQwGJLPd3FCx1qVlOTkgk9APt+QAoFgvJcBTIrw1zXO88TgdqeP+y5cTDFz/vx5HT16VF/72tciz7Q4nU7Nnz9fvb298ng86u3tjTom/HFubq5GR0cj2/Lz86PGFBYWStKYc0zU6CgnPqa/QCDIuY5pj/McV4rphce+vj6tX79eR48ejWz78MMP1dnZqYKCAnm9XnV0dCgQCET2Hzt2TPPmzVN2drYWLlyozMxMtba2Rvb7fD51dnbK6/VK0phzAAAAXC6mmFmwYIGWLVumX/7yl2pra9Mbb7yhe+65Rz6fT7fffruqqqp04cIFbdy4USdOnFBLS4v27dunmpoaSZeelamurlZjY6OOHDmirq4u1dXVyePxqKKiQpLGnAMAAOByMT8zs23bNm3dulV1dXX64IMPtGTJEh04cEDXX3+9JGn37t3asmWLKisrNWfOHG3YsEGVlZWR42trazU6OqqGhgYNDw/L6/Vqz549Sk5OliRlZ2ePOQcAAECYIxQKheK9iMkWCAR1/vxgvJfxqXK5nMrKytBPt/1VJ98ZiPdyMMkKbrhOj64vV3//IM8SYNoKf13jPE8Ms2ZljPsBYL5ZHwAAmEbMAAAA04gZAABgGjEDAABMI2YAAIBpxAwAADCNmAEAAKYRMwAAwDRiBgAAmEbMAAAA04gZAABgGjEDAABMI2YAAIBpxAwAADCNmAEAAKYRMwAAwDRiBgAAmEbMAAAA04gZAABgGjEDAABMI2YAAIBpxAwAADCNmAEAAKYRMwAAwDRiBgAAmEbMAAAA04gZAABgGjEDAABMI2YAAIBpxAwAADCNmAEAAKYRMwAAwDRiBgAAmEbMAAAA04gZAABgGjEDAABMI2YAAIBpxAwAADCNmAEAAKYRMwAAwDRiBgAAmEbMAAAA04gZAABgGjEDAABMI2YAAIBpxAwAADCNmAEAAKYRMwAAwDRiBgAAmEbMAAAA04gZAABgGjEDAABMI2YAAIBpxAwAADCNmAEAAKYRMwAAwDRiBgAAmEbMAAAA04gZAABgWswx8/777+u+++7TsmXLtHjxYn3/+99Xe3t7ZP/Ro0f1ne98RzfffLNuvfVWPffcc1HHj4yM6MEHH1RpaakWLVqkn/3sZzp//nzUmLHmAAAACIs5ZtavX69XXnlF27ZtU3Nzsz7/+c/rjjvu0FtvvaWTJ0+qpqZGZWVlamlp0Xe/+11t2LBBR48ejRz/wAMP6KWXXtJjjz2mp556Sm+99ZZqa2sj+8czBwAAQJgrlsFnzpzR3//+dzU1NemWW26RJN1777168cUX9eyzz+q9995TYWGh6urqJEkFBQXq7OzU7t27VVpaqp6eHj3zzDN6/PHHtWTJEknStm3bdOutt+qVV17RokWL9NRTT33iHAAAAJeL6c5MVlaWdu3apS9+8YuRbQ6HQw6HQz6fT+3t7VcFR0lJiTo6OhQKhdTR0RHZFjZv3jzl5uaqra1NksacAwAA4HIxxYzb7dZXvvIVpaSkRLY9//zzOnPmjMrKytTd3S2PxxN1TE5OjoaGhtTf36+enh5lZWUpNTX1qjHd3d2SNOYcAAAAl4vpZaYr/eMf/9AvfvELVVRUqLy8XMPDw1GhIynysd/v19DQ0FX7JSk1NVUjIyOSNOYcE+VyJdY3biUlJdbfF5fwecd0Fj6/Oc9xpQnHzAsvvKD6+notXrxYjY2Nki5FyZXBEf44PT1daWlpHxkkIyMjSk9PH9ccE+F0OpSVlTGhYwFL3O6JXSOAJZznuNKEYubpp5/Wli1bdOutt+rXv/515M5JXl6eent7o8b29vZqxowZmjlzpjwej95//335/f6ouy+9vb3Kzc0d1xwTEQyG5PNdnNCxViUlObngE5DPN6RAIBjvZQCTIvx1jfM8Mbjd6eO+CxdzzDQ1NWnz5s1atWqVNm7cKIfDEdm3ZMkSvfzyy1Hjjx07psWLF8vpdOqWW25RMBhUR0dH5CHfU6dOqaenR16vd1xzTNToKCc+pr9AIMi5jmmP8xxXiqkOTp06pYceekj/93//p5qaGvX19endd9/Vu+++qw8++ECrVq3Sa6+9psbGRp08eVJ79+7VX/7yF61Zs0aSlJubq2984xtqaGhQa2urXnvtNa1fv15Lly5VcXGxJI05BwAAwOUcoRi+3/nxxx/X9u3bP3JfZWWlHn74Yf3tb3/TI488otOnT2vu3Ln6yU9+oq9//euRcRcvXtRDDz2k559/XpK0bNkyNTQ0KCsrKzJmrDliFQgEdf784ISPt8jlciorK0M/3fZXnXxnIN7LwSQruOE6Pbq+XP39g/yLFdNW+Osa53limDUrY9wvM8UUM1YRM8TMdEfMIBEQM4kllpjh+9sAAIBpxAwAADCNmAEAAKYRMwAAwDRiBgAAmEbMAAAA04gZAABgGjEDAABMI2YAAIBpxAwAADCNmAEAAKYRMwAAwDRiBgAAmEbMAAAA04gZAABgGjEDAABMI2YAAIBpxAwAADCNmAEAAKYRMwAAwDRiBgAAmOaK9wIAALFzOh1yOh3xXsanKinJGfV7IgkGQwoGQ/FexpRFzACAMU6nQ5/5zIyE/J+6JLnd6fFewqcuEAjq/fcvEjQfg5gBAGOcToeSkpxqPNCht3s+iPdyMMnm5s5U/cpb5HQ6iJmPQcwAgFFv93ygk+8MxHsZQNwl5j1KAAAwbRAzAADANGIGAACYRswAAADTiBkAAGAaMQMAAEwjZgAAgGnEDAAAMI2YAQAAphEzAADANGIGAACYRswAAADTiBkAAGAaMQMAAEwjZgAAgGnEDAAAMI2YAQAAphEzAADANGIGAACYRswAAADTiBkAAGAaMQMAAEwjZgAAgGnEDAAAMI2YAQAAphEzAADANGIGAACYRswAAADTiBkAAGAaMQMAAEwjZgAAgGnEDAAAMI2YAQAAphEzAADANGIGAACY9j/FzBNPPKFVq1ZFbTt+/Liqq6tVXFys5cuXa//+/VH7g8GgduzYobKyMhUXF2vt2rU6e/ZsTHMAAACETThmDhw4oEcffTRqW39/v1avXq38/Hw1Nzdr3bp1amxsVHNzc2TMzp071dTUpM2bN+vgwYMKBoNas2aN/H7/uOcAAAAIc8V6QE9Pj+6//361trbqpptuitp36NAhJScna9OmTXK5XCooKNCZM2e0a9cuVVVVye/3a+/evaqvr1d5ebkkafv27SorK9Phw4e1YsWKMecAAAC4XMx3Zl5//XUlJyfrT3/6k26++eaofe3t7Vq6dKlcrv82UklJiU6fPq2+vj51dXVpcHBQpaWlkf1ut1tFRUVqa2sb1xwAAACXi/nOzPLly7V8+fKP3Nfd3a0FCxZEbcvJyZEknTt3Tt3d3ZKkvLy8q8aE9401x+zZs2NdsiTJ5UqsZ52TkhLr74tL+LwnBj7PiYnP+8eLOWY+yfDwsFJSUqK2paamSpJGRkY0NDQkSR85ZmBgYFxzTITT6VBWVsaEjgUscbvT470EAJOE6/vjXdOYSUtLizzIGxYOkBkzZigtLU2S5Pf7I38Oj0lPTx/XHBMRDIbk812c0LFWJSU5OfETkM83pEAgGO9lYJJxfSemRLu+3e70cd+NuqYx4/F41NvbG7Ut/HFubq5GR0cj2/Lz86PGFBYWjmuOiRodTZwTAIkrEAhyrgPTFNf3x7umL8B5vV51dHQoEAhEth07dkzz5s1Tdna2Fi5cqMzMTLW2tkb2+3w+dXZ2yuv1jmsOAACAy13TmKmqqtKFCxe0ceNGnThxQi0tLdq3b59qamokXXpWprq6Wo2NjTpy5Ii6urpUV1cnj8ejioqKcc0BAABwuWv6MlN2drZ2796tLVu2qLKyUnPmzNGGDRtUWVkZGVNbW6vR0VE1NDRoeHhYXq9Xe/bsUXJy8rjnAAAACHOEQqFQvBcx2QKBoM6fH4z3Mj5VLpdTWVkZ+um2v+rkOwPxXg4mWcEN1+nR9eXq7x/kNfUEwPWdWBL1+p41K2PcDwDzTesAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANOIGQAAYNqUjJlgMKgdO3aorKxMxcXFWrt2rc6ePRvvZQEAgCloSsbMzp071dTUpM2bN+vgwYMKBoNas2aN/H5/vJcGAACmmCkXM36/X3v37lVtba3Ky8u1cOFCbd++Xd3d3Tp8+HC8lwcAAKaYKRczXV1dGhwcVGlpaWSb2+1WUVGR2tra4rgyAAAwFbnivYArdXd3S5Ly8vKitufk5ET2xcrpdGjWrIz/eW2WOByXfn9gbalGA8H4LgaTzpV06d8l112XrlAozovBpOP6TiyJen07nY5xj51yMTM0NCRJSklJidqempqqgYGBCc3pcDiUlDT+/yjTyWdmpsZ7CfgUOZ1T7mYrJhHXd2Lh+v54U+6/TFpamiRd9bDvyMiI0tPT47EkAAAwhU25mAm/vNTb2xu1vbe3V7m5ufFYEgAAmMKmXMwsXLhQmZmZam1tjWzz+Xzq7OyU1+uN48oAAMBUNOWemUlJSVF1dbUaGxs1a9Ys3XDDDXrkkUfk8XhUUVER7+UBAIApZsrFjCTV1tZqdHRUDQ0NGh4eltfr1Z49e5ScnBzvpQEAgCnGEQol0jd6AQCA6WbKPTMDAAAQC2IGAACYRswAAADTiBkAAGAaMQMAAEwjZgAAgGnEDAAAMI2YAQAApk3JdwAGACS20dFRHT58WG1tbTp37pz8fr/S09OVm5srr9eriooKJSUlxXuZmCJ4B2AAwJTy9ttv64477lBPT4+KioqUk5Oj1NRUjYyMqLe3V52dnbr++uu1e/duXX/99fFeLqYAYgYAMKXceeedCgQCevTRRzVz5syr9vt8PtXV1Sk5OVmPP/54HFaIqYaYgVmrVq2Sw+EY19j9+/dP8moAXCuLFi3SwYMHVVhY+LFjurq6tHLlSnV0dHyKK8NUxTMzMOvLX/6yfvOb32jevHn60pe+FO/lALhGZs6cqZ6enk+Mmf/85z9KS0v7FFeFqYyYgVk1NTXKzMzU1q1b9cQTT2ju3LnxXhKAa+C2227TPffco7vvvlslJSXKy8tTSkqK/H6/enp69PLLL6uxsVG33XZbvJeKKYKXmWDej370I6WkpGjHjh3xXgqAayAUCum3v/2tnnzySV28ePGq/RkZGVq5cqXuvvtuOZ28wwiIGUwDvb29ev311/XVr3413ksBcA19+OGHOn78uHp6ejQ0NKS0tDR5PB4tXLhQKSkp8V4ephBiBgAAmMb9OQAAYBoxAwAATCNmAACAacQMAAAwjZgBAACmETMAAMA0YgYAAJhGzAAAANP+Hw4CsDavedeFAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "wine_dataset[\"color\"].value_counts().plot(kind=\"bar\")\n", + "\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.2964337577998153" + ] + }, + "execution_count": 52, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_dataset[\"fixed_acidity\"].std()" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(array([], dtype=int64), array([], dtype=int64))" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import numpy as np\n", + "np.where(pd.isnull(wine_dataset))## sprawdzanie czy istnieją puste wartości" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 54, + "metadata": {}, + "outputs": [], + "source": [ + "for column in wine_dataset.columns:\n", + " wine_dataset[column] = wine_dataset[column] / wine_dataset[column].abs().max() # normalizacja" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcoholqualitycolor
count6497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.0000006497.000000
mean0.4537930.2149780.1919480.0827240.0917080.1056240.2630560.9573780.8026190.2656340.7041480.6464860.753886
std0.0815370.1042000.0875410.0723070.0573380.0614170.1284590.0028860.0400970.0744030.0800480.0970280.430779
min0.2389940.0506330.0000000.0091190.0147300.0034600.0136360.9500760.6783040.1100000.5369130.3333330.000000
25%0.4025160.1455700.1506020.0273560.0621930.0588240.1750000.9551100.7755610.2150000.6375840.5555561.000000
50%0.4402520.1835440.1867470.0455930.0769230.1003460.2681820.9575640.8004990.2550000.6912750.6666671.000000
75%0.4842770.2531650.2349400.1231000.1063830.1418690.3545450.9595850.8279300.3000000.7583890.6666671.000000
max1.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.0000001.000000
\n", + "
" + ], + "text/plain": [ + " fixed_acidity volatile_acidity citric_acid residual_sugar \\\n", + "count 6497.000000 6497.000000 6497.000000 6497.000000 \n", + "mean 0.453793 0.214978 0.191948 0.082724 \n", + "std 0.081537 0.104200 0.087541 0.072307 \n", + "min 0.238994 0.050633 0.000000 0.009119 \n", + "25% 0.402516 0.145570 0.150602 0.027356 \n", + "50% 0.440252 0.183544 0.186747 0.045593 \n", + "75% 0.484277 0.253165 0.234940 0.123100 \n", + "max 1.000000 1.000000 1.000000 1.000000 \n", + "\n", + " chlorides free_sulfur_dioxide total_sulfur_dioxide density \\\n", + "count 6497.000000 6497.000000 6497.000000 6497.000000 \n", + "mean 0.091708 0.105624 0.263056 0.957378 \n", + "std 0.057338 0.061417 0.128459 0.002886 \n", + "min 0.014730 0.003460 0.013636 0.950076 \n", + "25% 0.062193 0.058824 0.175000 0.955110 \n", + "50% 0.076923 0.100346 0.268182 0.957564 \n", + "75% 0.106383 0.141869 0.354545 0.959585 \n", + "max 1.000000 1.000000 1.000000 1.000000 \n", + "\n", + " pH sulphates alcohol quality color \n", + "count 6497.000000 6497.000000 6497.000000 6497.000000 6497.000000 \n", + "mean 0.802619 0.265634 0.704148 0.646486 0.753886 \n", + "std 0.040097 0.074403 0.080048 0.097028 0.430779 \n", + "min 0.678304 0.110000 0.536913 0.333333 0.000000 \n", + "25% 0.775561 0.215000 0.637584 0.555556 1.000000 \n", + "50% 0.800499 0.255000 0.691275 0.666667 1.000000 \n", + "75% 0.827930 0.300000 0.758389 0.666667 1.000000 \n", + "max 1.000000 1.000000 1.000000 1.000000 1.000000 " + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_dataset.describe(include='all') # sprawdzanie wartości po znormalizowaniu" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "652 1.000000\n", + "442 0.981132\n", + "557 0.981132\n", + "554 0.974843\n", + "555 0.974843\n", + "243 0.943396\n", + "244 0.943396\n", + "544 0.899371\n", + "3125 0.893082\n", + "374 0.880503\n", + "Name: fixed_acidity, dtype: float64" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_dataset[\"fixed_acidity\"].nlargest(10) #sprawdza czy najwyższe wartości mają sens" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0 4408\n", + "0.0 1439\n", + "Name: color, dtype: int64" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from sklearn.model_selection import train_test_split\n", + "wine_train, wine_test = sklearn.model_selection.train_test_split(wine_dataset, test_size=0.1, random_state=1, stratify=wine_dataset[\"color\"])\n", + "wine_train[\"color\"].value_counts() \n", + "# podzielenie na train i test" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0 490\n", + "0.0 160\n", + "Name: color, dtype: int64" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_test[\"color\"].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [], + "source": [ + "wine_test, wine_val = sklearn.model_selection.train_test_split(wine_test, test_size=0.5, random_state=1, stratify=wine_test[\"color\"]) # podzielenie na test i validation" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0 245\n", + "0.0 80\n", + "Name: color, dtype: int64" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_test[\"color\"].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.0 245\n", + "0.0 80\n", + "Name: color, dtype: int64" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_val[\"color\"].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "metadata": {}, + "outputs": [], + "source": [ + "import seaborn as sns\n", + "sns.set_theme()" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "13" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "len(wine_dataset.columns)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 64, + "metadata": {}, + "outputs": [], + "source": [ + "sns.pairplot(data=wine_dataset, hue=\"color\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcoholqualitycolor
count325.000000325.000000325.000000325.000000325.000000325.000000325.000000325.000000325.000000325.000000325.000000325.000000325.000000
mean7.1270770.3429690.2998465.1975380.05422229.773846113.2830770.9945683.2222460.52775410.4885645.8153850.753846
std1.1813910.1700500.1295564.6089780.03140515.82267055.0725660.0028950.1596300.1445501.1726820.8551280.431433
min5.0000000.1000000.0000000.8000000.0190003.0000009.0000000.9881902.8600000.2600008.5000003.0000000.000000
25%6.4000000.2300000.2400001.8000000.03700017.00000074.0000000.9924003.1100000.4200009.5000005.0000001.000000
50%6.9000000.2800000.3000002.8000000.04800029.000000115.0000000.9948003.2100000.50000010.3000006.0000001.000000
75%7.5000000.4000000.3700007.5000000.06200041.000000151.0000000.9967503.3200000.60000011.3000006.0000001.000000
max13.0000000.9000000.74000022.0000000.41500067.000000253.0000001.0028903.6800001.17000014.0000009.0000001.000000
\n", + "
" + ], + "text/plain": [ + " fixed_acidity volatile_acidity citric_acid residual_sugar \\\n", + "count 325.000000 325.000000 325.000000 325.000000 \n", + "mean 7.127077 0.342969 0.299846 5.197538 \n", + "std 1.181391 0.170050 0.129556 4.608978 \n", + "min 5.000000 0.100000 0.000000 0.800000 \n", + "25% 6.400000 0.230000 0.240000 1.800000 \n", + "50% 6.900000 0.280000 0.300000 2.800000 \n", + "75% 7.500000 0.400000 0.370000 7.500000 \n", + "max 13.000000 0.900000 0.740000 22.000000 \n", + "\n", + " chlorides free_sulfur_dioxide total_sulfur_dioxide density \\\n", + "count 325.000000 325.000000 325.000000 325.000000 \n", + "mean 0.054222 29.773846 113.283077 0.994568 \n", + "std 0.031405 15.822670 55.072566 0.002895 \n", + "min 0.019000 3.000000 9.000000 0.988190 \n", + "25% 0.037000 17.000000 74.000000 0.992400 \n", + "50% 0.048000 29.000000 115.000000 0.994800 \n", + "75% 0.062000 41.000000 151.000000 0.996750 \n", + "max 0.415000 67.000000 253.000000 1.002890 \n", + "\n", + " pH sulphates alcohol quality color \n", + "count 325.000000 325.000000 325.000000 325.000000 325.000000 \n", + "mean 3.222246 0.527754 10.488564 5.815385 0.753846 \n", + "std 0.159630 0.144550 1.172682 0.855128 0.431433 \n", + "min 2.860000 0.260000 8.500000 3.000000 0.000000 \n", + "25% 3.110000 0.420000 9.500000 5.000000 1.000000 \n", + "50% 3.210000 0.500000 10.300000 6.000000 1.000000 \n", + "75% 3.320000 0.600000 11.300000 6.000000 1.000000 \n", + "max 3.680000 1.170000 14.000000 9.000000 1.000000 " + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_test.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcoholqualitycolor
count5847.0000005847.0000005847.0000005847.0000005847.0000005847.0000005847.0000005847.0000005847.0000005847.0000005847.0000005847.0000005847.000000
mean7.2161790.3397960.3191115.4174020.05631030.535403115.6735080.9946823.2183030.53159610.4944555.8205920.753891
std1.2996950.1648170.1461414.7363990.03581617.84552256.4325120.0029950.1599190.1497281.1898010.8723530.430780
min3.8000000.0800000.0000000.6000000.0090001.0000006.0000000.9871102.7200000.2200008.0000003.0000000.000000
25%6.4000000.2300000.2500001.8000000.03800017.00000077.5000000.9923003.1100000.4300009.5000005.0000001.000000
50%7.0000000.2900000.3100003.0000000.04700029.000000118.0000000.9948403.2100000.51000010.3000006.0000001.000000
75%7.7000000.4000000.3900008.1000000.06500041.000000155.5000000.9969853.3200000.60000011.3000006.0000001.000000
max15.9000001.5800001.66000065.8000000.611000289.000000440.0000001.0389804.0100002.00000014.9000009.0000001.000000
\n", + "
" + ], + "text/plain": [ + " fixed_acidity volatile_acidity citric_acid residual_sugar \\\n", + "count 5847.000000 5847.000000 5847.000000 5847.000000 \n", + "mean 7.216179 0.339796 0.319111 5.417402 \n", + "std 1.299695 0.164817 0.146141 4.736399 \n", + "min 3.800000 0.080000 0.000000 0.600000 \n", + "25% 6.400000 0.230000 0.250000 1.800000 \n", + "50% 7.000000 0.290000 0.310000 3.000000 \n", + "75% 7.700000 0.400000 0.390000 8.100000 \n", + "max 15.900000 1.580000 1.660000 65.800000 \n", + "\n", + " chlorides free_sulfur_dioxide total_sulfur_dioxide density \\\n", + "count 5847.000000 5847.000000 5847.000000 5847.000000 \n", + "mean 0.056310 30.535403 115.673508 0.994682 \n", + "std 0.035816 17.845522 56.432512 0.002995 \n", + "min 0.009000 1.000000 6.000000 0.987110 \n", + "25% 0.038000 17.000000 77.500000 0.992300 \n", + "50% 0.047000 29.000000 118.000000 0.994840 \n", + "75% 0.065000 41.000000 155.500000 0.996985 \n", + "max 0.611000 289.000000 440.000000 1.038980 \n", + "\n", + " pH sulphates alcohol quality color \n", + "count 5847.000000 5847.000000 5847.000000 5847.000000 5847.000000 \n", + "mean 3.218303 0.531596 10.494455 5.820592 0.753891 \n", + "std 0.159919 0.149728 1.189801 0.872353 0.430780 \n", + "min 2.720000 0.220000 8.000000 3.000000 0.000000 \n", + "25% 3.110000 0.430000 9.500000 5.000000 1.000000 \n", + "50% 3.210000 0.510000 10.300000 6.000000 1.000000 \n", + "75% 3.320000 0.600000 11.300000 6.000000 1.000000 \n", + "max 4.010000 2.000000 14.900000 9.000000 1.000000 " + ] + }, + "execution_count": 26, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_train.describe()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
fixed_acidityvolatile_aciditycitric_acidresidual_sugarchloridesfree_sulfur_dioxidetotal_sulfur_dioxidedensitypHsulphatesalcoholqualitycolor
count325.000000325.000000325.000000325.000000325.000000325.000000325.000000325.000000325.000000325.000000325.000000325.000000325.000000
mean7.2878460.3340310.3288316.1536920.05287431.095385119.4846150.9950913.2183080.52889210.4472825.7815380.753846
std1.3454710.1560230.1441925.2209440.02147117.86174159.4815800.0031500.1771760.1361711.2655930.9086170.431433
min4.7000000.0900000.0000000.8000000.0120003.0000008.0000000.9874602.8700000.2800008.4000003.0000000.000000
25%6.4000000.2300000.2600002.0000000.03900016.00000079.0000000.9927003.1000000.4300009.4000005.0000001.000000
50%7.1000000.2900000.3100004.5500000.04800029.000000125.0000000.9953203.2100000.50000010.2000006.0000001.000000
75%7.8000000.4000000.4000008.8000000.06000045.000000163.0000000.9974503.3200000.61000011.3000006.0000001.000000
max15.0000001.1800000.74000031.6000000.17000077.000000251.0000001.0103004.0100001.14000014.0000008.0000001.000000
\n", + "
" + ], + "text/plain": [ + " fixed_acidity volatile_acidity citric_acid residual_sugar \\\n", + "count 325.000000 325.000000 325.000000 325.000000 \n", + "mean 7.287846 0.334031 0.328831 6.153692 \n", + "std 1.345471 0.156023 0.144192 5.220944 \n", + "min 4.700000 0.090000 0.000000 0.800000 \n", + "25% 6.400000 0.230000 0.260000 2.000000 \n", + "50% 7.100000 0.290000 0.310000 4.550000 \n", + "75% 7.800000 0.400000 0.400000 8.800000 \n", + "max 15.000000 1.180000 0.740000 31.600000 \n", + "\n", + " chlorides free_sulfur_dioxide total_sulfur_dioxide density \\\n", + "count 325.000000 325.000000 325.000000 325.000000 \n", + "mean 0.052874 31.095385 119.484615 0.995091 \n", + "std 0.021471 17.861741 59.481580 0.003150 \n", + "min 0.012000 3.000000 8.000000 0.987460 \n", + "25% 0.039000 16.000000 79.000000 0.992700 \n", + "50% 0.048000 29.000000 125.000000 0.995320 \n", + "75% 0.060000 45.000000 163.000000 0.997450 \n", + "max 0.170000 77.000000 251.000000 1.010300 \n", + "\n", + " pH sulphates alcohol quality color \n", + "count 325.000000 325.000000 325.000000 325.000000 325.000000 \n", + "mean 3.218308 0.528892 10.447282 5.781538 0.753846 \n", + "std 0.177176 0.136171 1.265593 0.908617 0.431433 \n", + "min 2.870000 0.280000 8.400000 3.000000 0.000000 \n", + "25% 3.100000 0.430000 9.400000 5.000000 1.000000 \n", + "50% 3.210000 0.500000 10.200000 6.000000 1.000000 \n", + "75% 3.320000 0.610000 11.300000 6.000000 1.000000 \n", + "max 4.010000 1.140000 14.000000 8.000000 1.000000 " + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "wine_val.describe()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +}