ium_z487177/skryptdockerBibliotekiDL

69 lines
2.0 KiB
Plaintext
Raw Permalink Normal View History

2023-09-24 20:09:46 +02:00
import os
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
# Training
train_file_path = "Train1.csv"
train_data = pd.read_csv(train_file_path)
train_data = train_data.dropna(subset=['price_range'])
valid_values = {0.0, 1.0, 2.0, 3.0}
assert set(train_data['price_range'].unique()) <= valid_values, "Unexpected values in price_range"
class SimpleNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return self.softmax(x)
input_size = len(train_data.columns) - 2
hidden_size = 50
output_size = len(valid_values)
model = SimpleNN(input_size, hidden_size, output_size)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
epochs = 10
for epoch in range(epochs):
inputs = torch.tensor(train_data.drop(['price_range', 'ID'], axis=1).values, dtype=torch.float32)
labels = torch.tensor(train_data['price_range'].values, dtype=torch.long)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}/{epochs}, Loss: {loss.item()}")
save_path = "model.pth"
torch.save(model.state_dict(), save_path)
# Testing
model.load_state_dict(torch.load("model.pth"))
model.eval()
test_file_path = "Test1.csv"
test_data = pd.read_csv(test_file_path)
inputs = torch.tensor(test_data.drop(['price_range', 'ID'], axis=1).values, dtype=torch.float32)
with torch.no_grad():
predictions = model(inputs)
predicted_classes = torch.argmax(predictions, dim=1)
predicted_classes_df = pd.DataFrame(predicted_classes.numpy(), columns=['Predicted_Price_Range'])
predicted_classes_df['Actual_Price_Range'] = test_data['price_range'].values
output_path = 'predictions.csv'
predicted_classes_df.to_csv(output_path, index=False)