ium_z487177/skryptBibliotekiDL2.py

40 lines
1.4 KiB
Python
Raw Normal View History

2023-09-24 19:46:49 +02:00
import os
import pandas as pd
import torch
import torch.nn as nn
class SimpleNN(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, output_size)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return self.softmax(x)
input_size = 20
hidden_size = 50
output_size = 4
model = SimpleNN(input_size, hidden_size, output_size)
model.load_state_dict(torch.load("model.pth"))
model.eval()
file_path = os.path.join("C:", os.sep, "Users", "reyva", "OneDrive", "Pulpit", "studia", "InzynieriaUczeniaMaszynowego", 'Test1.csv')
test_data = pd.read_csv(file_path)
inputs = torch.tensor(test_data.drop(['price_range', 'ID'], axis=1).values, dtype=torch.float32)
with torch.no_grad():
predictions = model(inputs)
predicted_classes = torch.argmax(predictions, dim=1)
predicted_classes_df = pd.DataFrame(predicted_classes.numpy(), columns=['Predicted_Price_Range'])
predicted_classes_df['Actual_Price_Range'] = test_data['price_range'].values
output_path = os.path.join("C:", os.sep, "Users", "reyva", "OneDrive", "Pulpit", "studia", "InzynieriaUczeniaMaszynowego", 'predictions.csv')
predicted_classes_df.to_csv(output_path, index=False)