dockerscript
This commit is contained in:
parent
e8a8a07d8d
commit
919f446857
22
createDataset/Jenkinsfile
vendored
22
createDataset/Jenkinsfile
vendored
@ -20,25 +20,35 @@ pipeline {
|
||||
)
|
||||
}
|
||||
stages {
|
||||
stage('Run sh file') {
|
||||
stage('Download dataset') {
|
||||
steps {
|
||||
checkout scm
|
||||
dir ('./createDataset') {
|
||||
sh 'ls -l'
|
||||
withEnv(["KAGGLE_USERNAME=${params.KAGGLE_USERNAME}",
|
||||
"KAGGLE_KEY=${params.KAGGLE_KEY}" ]) {
|
||||
sh 'chmod +x ./datasetScript.sh'
|
||||
sh './datasetScript.sh'
|
||||
// sh 'chmod +x ./datasetScript.sh'
|
||||
// sh './datasetScript.sh'
|
||||
sh 'kaggle datasets download -d rishikeshkonapure/home-loan-approval'
|
||||
sh 'unzip -o home-loan-approval.zip'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
stage('Archive file') {
|
||||
stage('Docker') {
|
||||
steps {
|
||||
dir ('./createDataset') {
|
||||
archiveArtifacts artifacts: 'loan_sanction_shuffled.csv', fingerprint: true\
|
||||
def dockerImage = docker.build("docker-iamge", "./docker")
|
||||
dockerImage.inside {
|
||||
sh 'ls -l'
|
||||
}
|
||||
}
|
||||
}
|
||||
// stage('Archive file') {
|
||||
// steps {
|
||||
// dir ('./createDataset') {
|
||||
// archiveArtifacts artifacts: 'loan_sanction_shuffled.csv', fingerprint: true\
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
}
|
||||
}
|
||||
|
22
createDataset/createDataset.py
Normal file
22
createDataset/createDataset.py
Normal file
@ -0,0 +1,22 @@
|
||||
import pandas as pd
|
||||
from sklearn.preprocessing import MinMaxScaler
|
||||
from sklearn.model_selection import train_test_split
|
||||
home_loan_train = pd.read_csv('loan_sanction_train.csv')
|
||||
home_loan_test = pd.read_csv('loan_sanction_test.csv')
|
||||
|
||||
home_loan_val_final, home_loan_test_final = train_test_split(home_loan_test, test_size=0.5, random_state=1)
|
||||
home_loan_train_final = home_loan_train
|
||||
|
||||
numeric_cols_train = home_loan_train_final.select_dtypes(include='number').columns
|
||||
numeric_cols_test = home_loan_test_final.select_dtypes(include='number').columns
|
||||
numeric_cols_val = home_loan_val_final.select_dtypes(include='number').columns
|
||||
|
||||
scaler = MinMaxScaler()
|
||||
|
||||
home_loan_train_final[numeric_cols_train] = scaler.fit_transform(home_loan_train_final[numeric_cols_train])
|
||||
home_loan_test_final[numeric_cols_test] = scaler.fit_transform(home_loan_test_final[numeric_cols_test])
|
||||
home_loan_val_final[numeric_cols_val] = scaler.fit_transform(home_loan_val_final[numeric_cols_val])
|
||||
|
||||
home_loan_train_final.to_csv('home_loan_train.csv', index=False)
|
||||
home_loan_test_final.to_csv('home_loan_test.csv', index=False)
|
||||
home_loan_val_final.to_csv('home_loan_val.csv', index=False)
|
Loading…
Reference in New Issue
Block a user