2023-06-26 19:38:13 +02:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.optim as optim
|
|
|
|
from torch.utils.data import DataLoader, TensorDataset
|
|
|
|
import pandas as pd
|
|
|
|
from sklearn.preprocessing import LabelBinarizer
|
|
|
|
import numpy as np
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
|
|
|
|
class MyNeuralNetwork(nn.Module):
|
|
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
|
|
super(MyNeuralNetwork, self).__init__(*args, **kwargs)
|
2023-06-27 15:19:55 +02:00
|
|
|
self.fc1 = nn.Linear(7, 12)
|
2023-06-26 19:38:13 +02:00
|
|
|
self.relu = nn.ReLU()
|
2023-06-27 15:19:55 +02:00
|
|
|
self.fc1 = nn.Linear(7, 12)
|
2023-06-26 19:38:13 +02:00
|
|
|
self.relu = nn.ReLU()
|
2023-06-27 15:19:55 +02:00
|
|
|
self.fc2 = nn.Linear(12, 1)
|
2023-06-26 19:38:13 +02:00
|
|
|
self.sigmoid = nn.Sigmoid()
|
|
|
|
|
|
|
|
def forward(self, x):
|
|
|
|
x = self.fc1(x)
|
|
|
|
x = self.relu(x)
|
|
|
|
x = self.fc2(x)
|
|
|
|
x = self.sigmoid(x)
|
|
|
|
return x
|
|
|
|
|
|
|
|
def prepare_df_for_nn(df):
|
|
|
|
|
|
|
|
id_column_name_list = [column for column in df.columns.to_list() if 'id' in column.lower()]
|
|
|
|
if len(id_column_name_list) == 0:
|
|
|
|
pass
|
|
|
|
else:
|
|
|
|
df.drop(id_column_name_list[0], inplace=True, axis=1)
|
|
|
|
encoder = LabelBinarizer()
|
|
|
|
df.reset_index(inplace=True)
|
|
|
|
for column in df.columns:
|
|
|
|
if str(df[column].dtype).lower() == 'object':
|
|
|
|
encoded_column = encoder.fit_transform(df[column])
|
|
|
|
df[column] = pd.Series(encoded_column.flatten(), dtype=pd.Int16Dtype)
|
|
|
|
return df
|
|
|
|
|
|
|
|
def load_data(path):
|
|
|
|
df = pd.read_csv(path)
|
|
|
|
train_dataset = prepare_df_for_nn(df)
|
|
|
|
x = train_dataset.iloc[:, :-1].values.astype(float)
|
|
|
|
y = train_dataset.iloc[:, -1].values.astype(float)
|
|
|
|
x_tensor = torch.tensor(x, dtype=torch.float32)
|
|
|
|
y_tensor = torch.tensor(y, dtype=torch.float32)
|
|
|
|
dataset = TensorDataset(x_tensor, y_tensor)
|
|
|
|
return dataset
|
|
|
|
|
|
|
|
def train(epochs, dataloader_train):
|
|
|
|
model: MyNeuralNetwork = MyNeuralNetwork()
|
|
|
|
criterion: nn.BCELoss = nn.BCELoss()
|
|
|
|
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
|
|
|
for epoch in range(epochs):
|
|
|
|
for inputs, labels in dataloader_train:
|
|
|
|
outputs = model(inputs)
|
|
|
|
labels = labels.reshape((labels.shape[0], 1))
|
|
|
|
loss = criterion(outputs, labels)
|
|
|
|
optimizer.zero_grad()
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
print(f"Epoch {epoch+1}/{epochs}, Loss: {loss.item():.4f}")
|
|
|
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
def main():
|
|
|
|
parser = argparse.ArgumentParser(description='A test program.')
|
|
|
|
parser.add_argument("--epochs", help="Prints the supplied argument.", default='10')
|
|
|
|
args = parser.parse_args()
|
|
|
|
config = vars(args)
|
|
|
|
epochs = int(config["epochs"])
|
|
|
|
train_dataset = load_data("gender_classification_train.csv")
|
|
|
|
batch_size = 32
|
|
|
|
dataloader_train = DataLoader(train_dataset, batch_size = batch_size, shuffle=True)
|
|
|
|
model = train(epochs, dataloader_train)
|
|
|
|
torch.save(model.state_dict(), 'model.pt')
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|