From d679916066c18903cff558a0b058bef5264b577b Mon Sep 17 00:00:00 2001 From: wojciechbatruszewicz Date: Tue, 27 Jun 2023 15:34:59 +0200 Subject: [PATCH] evaluate --- JenkinsfileEvaluate | 48 +++++++++++++++++++++++++++ JenkinsfileTrain | 10 +++--- evaluate.py | 80 +++++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 133 insertions(+), 5 deletions(-) create mode 100644 JenkinsfileEvaluate create mode 100644 evaluate.py diff --git a/JenkinsfileEvaluate b/JenkinsfileEvaluate new file mode 100644 index 0000000..52888e3 --- /dev/null +++ b/JenkinsfileEvaluate @@ -0,0 +1,48 @@ +pipeline { + agent any + parameters { + buildSelector( + name: 'BUILD_SELECTOR', + defaultSelector: lastSuccessful(), + description: 'A build to take the artifacts from' + ) + string( + name: 'EPOCHS', + description: 'Number of epochs', + defaultValue: '10' + ) + } + stages { + stage('Copy artifacts') { + steps { + script { + copyArtifacts( + projectName: 'z-s487179-training/main', + selector: buildParameter('BUILD_SELECTOR'), + target: './MLEvaluate' + ) + copyArtifacts( + projectName: 'z-s487179-create-dataset', + selector: buildParameter('BUILD_SELECTOR'), + target: './MLEvaluate' + ) + } + } + } + stage('Run training and save model') { + steps { + script { + sh 'ls -l' + docker.image('docker-image').inside { + dir('./MLEvaluate') { + sh 'ls -l' + sh 'python3 ./model_test.py' + archiveArtifacts 'plot.png' + archiveArtifacts 'result.csv' + } + } + } + } + } + } +} \ No newline at end of file diff --git a/JenkinsfileTrain b/JenkinsfileTrain index 7fac944..d486d52 100644 --- a/JenkinsfileTrain +++ b/JenkinsfileTrain @@ -37,9 +37,9 @@ pipeline { } } } - // post { - // success { - // build job: 'x1-evaluation.eg/main', wait: false - // } - // } + post { + success { + build job: 'x1-evaluation.eg/main', wait: false + } + } } \ No newline at end of file diff --git a/evaluate.py b/evaluate.py new file mode 100644 index 0000000..38c2fff --- /dev/null +++ b/evaluate.py @@ -0,0 +1,80 @@ +import torch +from train import MyNeuralNetwork, load_data +from torch.utils.data import DataLoader +import csv +import os +import matplotlib.pyplot as plt +from typing import Tuple, List + +def evaluate_model() -> Tuple[List[float], float]: + model = MyNeuralNetwork() + model.load_state_dict(torch.load('model.pt')) + model.eval() + test_dataset = load_data("gender_classification_test.csv") + batch_size: int = 32 + test_dataloader: DataLoader = DataLoader(test_dataset, batch_size=batch_size) + predictions = [] + labels = [] + get_label = lambda pred: 1 if pred >= 0.5 else 0 + total = 0 + correct = 0 + with torch.no_grad(): + for batch_data, batch_labels in test_dataloader: + batch_predictions = model(batch_data) + predicted_batch_labels = [get_label(prediction) for prediction in batch_predictions] + total += len(predicted_batch_labels) + batch_labels_list = list(map(int,batch_labels.tolist())) + correct += sum(x == y for x, y in zip(predicted_batch_labels, batch_labels_list)) + predictions.extend(batch_predictions) + labels.extend(batch_labels) + accuracy = correct/total + return predictions, accuracy + +def save_predictions(predictions: list[float]) -> None: + filename = "results.csv" + column_name = "predict" + with open(filename, 'w', newline='') as file: + writer = csv.writer(file) + writer.writerow([column_name]) + for result in predictions: + loan_decision = 1 if result.item() > 0.5 else 0 + writer.writerow([loan_decision]) + +def save_accuracy(accuracy): + filename = 'results.csv' + if os.path.exists(filename): + with open(filename, 'a') as file: + writer = csv.writer(file) + writer.writerow([accuracy]) + else: + with open(filename, 'w') as file: + writer = csv.writer(file) + writer.writerow(['accuracy']) + writer.writerow([accuracy]) + +def plot_accuracy(): + filename = 'results.csv' + accuracy_results = [] + if os.path.exists(filename): + with open(filename, 'r') as file: + reader = csv.reader(file) + for idx, row in enumerate(reader): + if idx == 0: + continue + accuracy_results.append(float(row[0])) + iterations = list(map(str,range(1, len(accuracy_results)+1))) + plt.plot(iterations, accuracy_results) + plt.xlabel('build') + plt.ylabel('accuracy') + plt.title("Accuracies over builds.") + plt.savefig("plot.png") + +def main(): + predictions, accuracy = evaluate_model() + save_predictions(predictions) + save_accuracy(accuracy) + plot_accuracy() + + +if __name__ == "__main__": + main() \ No newline at end of file