ium_s487182/train.py

54 lines
1.9 KiB
Python
Raw Normal View History

2023-06-16 04:58:11 +02:00
import pandas as pd
import tensorflow as tf
from sklearn.preprocessing import StandardScaler, OneHotEncoder
2023-06-17 20:24:05 +02:00
from sklearn.model_selection import train_test_split
from sklearn import preprocessing
2023-06-16 04:58:11 +02:00
2023-06-17 20:23:49 +02:00
water = pd.read_csv('waterQuality1.csv')
water = water[water['is_safe'].apply(lambda x: str(x).isdigit())]
water['is_safe'].value_counts()
water_min_max = preprocessing.MinMaxScaler()
water_min_max = water_min_max.fit_transform(water)
water_min_max = pd.DataFrame(water_min_max, columns=water.columns)
waterNorm = water_min_max
water_train, water_test = train_test_split(waterNorm, train_size=0.8, random_state=1, stratify=waterNorm["is_safe"])
water_test, water_dev = train_test_split(water_test, train_size=0.66, random_state=1, stratify=water_test["is_safe"])
2023-06-16 04:58:11 +02:00
data_train = pd.read_csv('dane/water_train.csv')
X_train = data_train.drop('is_safe', axis=1)
y_train = data_train['is_safe']
categorical_cols = ['bacteria', 'viruses']
encoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
X_train_encoded = pd.DataFrame(encoder.fit_transform(X_train[categorical_cols]))
X_train_processed = pd.concat([X_train.drop(categorical_cols, axis=1), X_train_encoded], axis=1)
X_train_processed.columns = X_train_processed.columns.astype(str)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train_processed)
model = tf.keras.Sequential([
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dense(256, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(
loss=tf.keras.losses.binary_crossentropy,
optimizer=tf.keras.optimizers.Adam(lr=0.03),
metrics=[
tf.keras.metrics.BinaryAccuracy(name='accuracy'),
tf.keras.metrics.Precision(name='precision'),
tf.keras.metrics.Recall(name='recall')
]
)
model.fit(X_train_scaled, y_train, batch_size=32, epochs=5, verbose=2)
model.save("savedmodel")