ium_s487182/pred.py

39 lines
1.4 KiB
Python
Raw Normal View History

2023-06-16 04:58:11 +02:00
import pandas as pd
import tensorflow as tf
from sklearn.preprocessing import StandardScaler, OneHotEncoder
import numpy as np
categorical_cols = ['bacteria', 'viruses']
encoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
data_test = pd.read_csv('dane/water_test.csv')
X_test = data_test.drop('is_safe', axis=1)
y_test = data_test['is_safe']
X_test_encoded = pd.DataFrame(encoder.fit_transform(X_test[categorical_cols]))
X_test_processed = pd.concat([X_test.drop(categorical_cols, axis=1), X_test_encoded], axis=1)
X_test_processed.columns = X_test_processed.columns.astype(str)
scaler = StandardScaler()
X_test_scaled = scaler.fit_transform(X_test_processed)
model = tf.keras.models.load_model('savedmodel')
predictions = model.predict(X_test_scaled)
print(predictions)
prediction_classes = [1 if prob > 0.5 else 0 for prob in np.ravel(predictions)]
print(prediction_classes[:30])
with open("predictionsResults.txt", mode='w', newline='') as f:
2023-06-17 20:14:19 +02:00
f.write(str(f'Results:))
2023-06-16 04:58:11 +02:00
for pred in predictions:
f.write(str(f'{pred[0]}'))
f.write("\n")
loss, accuracy, precision, recall = model.evaluate(X_test_scaled, y_test)
from sklearn.metrics import accuracy_score, precision_score, recall_score
print(f'Accuracy: {accuracy_score(y_test, prediction_classes):.2f}')
print(f'Precision: {precision_score(y_test, prediction_classes):.2f}')
print(f'Recall: {recall_score(y_test, prediction_classes):.2f}')