import pandas as pd import tensorflow as tf from sklearn.preprocessing import StandardScaler, OneHotEncoder import numpy as np categorical_cols = ['bacteria', 'viruses'] encoder = OneHotEncoder(sparse=False, handle_unknown='ignore') data_test = pd.read_csv('dane/water_test.csv') X_test = data_test.drop('is_safe', axis=1) y_test = data_test['is_safe'] X_test_encoded = pd.DataFrame(encoder.fit_transform(X_test[categorical_cols])) X_test_processed = pd.concat([X_test.drop(categorical_cols, axis=1), X_test_encoded], axis=1) X_test_processed.columns = X_test_processed.columns.astype(str) scaler = StandardScaler() X_test_scaled = scaler.fit_transform(X_test_processed) model = tf.keras.models.load_model('savedmodel') predictions = model.predict(X_test_scaled) print(predictions) prediction_classes = [1 if prob > 0.5 else 0 for prob in np.ravel(predictions)] print(prediction_classes[:30]) with open("predictionsResults.txt", mode='w', newline='') as f: f.write(str(f'Results:')) for pred in predictions: f.write(str(f'{pred[0]}')) f.write("\n") loss, accuracy, precision, recall = model.evaluate(X_test_scaled, y_test) from sklearn.metrics import accuracy_score, precision_score, recall_score print(f'Accuracy: {accuracy_score(y_test, prediction_classes):.2f}') print(f'Precision: {precision_score(y_test, prediction_classes):.2f}') print(f'Recall: {recall_score(y_test, prediction_classes):.2f}')