{ "cells": [ { "cell_type": "code", "execution_count": 67, "id": "9d832900", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import re\n", "\n", "pd.set_option('display.max_rows', 10000)\n", "pd.set_option('display.max_columns', 10000)\n", "\n", "file_path = 'games.csv'\n", "\n", "data = pd.read_csv(file_path) " ] }, { "cell_type": "code", "execution_count": 84, "id": "84d9af06", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Qd1', 'Qc2', 'Qc3', 'Qb3', 'Qb7+', 'Qxd7#']\n", "['Qd1', 'Qxd4', 'Qd1', 'Qa4', 'Qh4', 'Qxg5', 'Qg3', 'Qxg6']\n", "Square names from list1: ['d1', 'c2', 'c3', 'b3', 'b7', 'd7']\n", "Square names from list2: ['d1', 'd4', 'd1', 'a4', 'h4', 'g5', 'g3', 'g6']\n" ] } ], "source": [ "import re\n", "\n", "def extract_square_names(moves_list):\n", " square_names = []\n", "\n", " for move in moves_list:\n", " # Use a regular expression to match the chess square name\n", " match = re.search(r'[a-h][1-8]', move)\n", " if match:\n", " square_names.append(match.group())\n", "\n", " return square_names" ] }, { "cell_type": "code", "execution_count": 85, "id": "1f11b18c", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Qd1', 'Qxd4', 'Qd1', 'Qa4', 'Qh4', 'Qxg5', 'Qg3', 'Qxg6']\n", "White queen moves: ['d1', 'd4', 'd1', 'a4', 'h4', 'g5', 'g3', 'g6']\n", "['Qd8', 'Qe7', 'Qc7', 'Qg7', 'Qxg6']\n", "Black queen moves: ['d8', 'e7', 'c7', 'g7', 'g6']\n" ] } ], "source": [ "opening_number_of_games = data['opening_name'].value_counts()\n", "opening_number_of_games.head(10)\n", "# openings = ['Sicilian Defense', 'Old Benoni Defense', \"Queen's Pawn Game: Mason Attack\"]\n", "\n", "old_benoni_games = data[data['opening_name'].str.contains('Old Benoni Defense', case = False)]\n", "old_benoni_count = len(old_benoni_games)\n", "\n", "for text in old_benoni_games.head(1)['moves']:\n", " moves = text.split()\n", " white_queen_moves = ['Qd1']\n", " black_queen_moves = ['Qd8']\n", " for idx, move in enumerate(moves):\n", " if move.startswith(\"Q\"):\n", " if idx % 2 == 0:\n", " white_queen_moves.append(move)\n", " if idx % 2 == 1:\n", " black_queen_moves.append(move)\n", "# print(f'White queen moves: {white_queen_moves}')\n", "# print(f'Black queen moves: {black_queen_moves}')\n", " print(f'White queen moves: {extract_square_names(white_queen_moves)}')\n", " print(f'Black queen moves: {extract_square_names(black_queen_moves)}')\n", "# list1 = ['Qd1', 'Qc2', 'Qc3', 'Qb3', 'Qb7+', 'Qxd7#']\n", "# list2 = ['Qd1', 'Qxd4', 'Qd1', 'Qa4', 'Qh4', 'Qxg5', 'Qg3', 'Qxg6']\n", "# print(white_queen_moves)\n", "# print(list1)" ] }, { "cell_type": "code", "execution_count": 3, "id": "e0e4858a", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "opening_name\n", "Alekhine Defense: Exchange Variation 9.0\n", "Anderssen Opening 1.0\n", "Benko Gambit Accepted | Fully Accepted Variation 9.0\n", "Benko Gambit Declined | Quiet Line 7.0\n", "Benoni Defense: Benoni-Indian Defense 4.0\n", " ... \n", "Trompowsky Attack 3.0\n", "Van Geet Opening: Dunst-Perrenet Gambit 5.0\n", "Vienna Game #2 6.0\n", "Vienna Game: Vienna Gambit | Main Line 6.0\n", "Yusupov-Rubinstein System 5.0\n", "Name: opening_ply, Length: 112, dtype: float64\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/var/folders/lm/cbc3n48n4x94zd3vf6zbbly40000gn/T/ipykernel_2729/977498901.py:12: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n", " filtered_data = data[data['white_rating'] > 2200][data['black_rating'] > 2200]\n" ] } ], "source": [ "\n", "\n", "# Filtrowanie danych dla elo > 2200\n", "filtered_data = data[data['white_rating'] > 2200][data['black_rating'] > 2200]\n", "\n", "# Oblicz średnią opening_ply dla każdej unikalnej wartości w kolumnie 'opening'\n", "average_opening_ply = filtered_data.groupby('opening_name')['opening_ply'].mean()\n", "\n", "# Wyświetl średnie opening_ply dla każdej opening, dla elo > 2200\n", "print(average_opening_ply)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.6" } }, "nbformat": 4, "nbformat_minor": 5 }