ium_z487183/prepare_dataset.py

50 lines
1.3 KiB
Python
Raw Normal View History

2023-04-21 09:37:13 +02:00
import os
2023-04-20 21:01:03 +02:00
import pandas as pd
from sklearn.model_selection import train_test_split
# get data
sells = pd.read_csv('data/Property Sales of Melbourne City.csv')
# delete unnecessary columns and drop rows with NaN values
columns_to_drop = [
'Lattitude',
'Longtitude',
'CouncilArea',
'Propertycount',
'Method',
'SellerG',
'Date',
'Postcode',
'Bedroom2',
'Bathroom',
'Car',
'BuildingArea',
'Address'
]
sells = sells.drop(columns_to_drop, axis=1).dropna()
# normalize values
sells["Price"] = sells["Price"] / sells["Price"].max()
sells["Landsize"] = sells["Landsize"] / sells["Landsize"].max()
sells["Distance"] = sells["Distance"] / sells["Distance"].max()
2023-04-21 09:37:13 +02:00
# cut off dataset to fixed number of values
cutoff = int(os.environ['CUTOFF'])
sells = sells.sample(cutoff)
2023-04-20 21:01:03 +02:00
# split to train/dev/test subsets
X = sells
Y = sells.pop('Price')
X_train, X_temp, Y_train, Y_temp = train_test_split(X, Y, test_size=0.3, random_state=1)
X_val, X_test, Y_val, Y_test = train_test_split(X_temp, Y_temp, test_size=0.5, random_state=1)
# save subsets to files
X_train.to_csv('X_train.csv', index=False)
X_val.to_csv('X_val.csv', index=False)
X_test.to_csv('X_test.csv', index=False)
Y_train.to_csv('Y_train.csv', index=False)
Y_val.to_csv('Y_val.csv', index=False)
Y_test.to_csv('Y_test.csv', index=False)