2023-04-21 09:37:13 +02:00
|
|
|
import os
|
2023-04-20 21:01:03 +02:00
|
|
|
import pandas as pd
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
|
|
|
|
# get data
|
|
|
|
sells = pd.read_csv('data/Property Sales of Melbourne City.csv')
|
|
|
|
|
|
|
|
# delete unnecessary columns and drop rows with NaN values
|
|
|
|
columns_to_drop = [
|
|
|
|
'Lattitude',
|
|
|
|
'Longtitude',
|
|
|
|
'CouncilArea',
|
|
|
|
'Propertycount',
|
|
|
|
'Method',
|
|
|
|
'SellerG',
|
|
|
|
'Date',
|
|
|
|
'Postcode',
|
|
|
|
'Bedroom2',
|
|
|
|
'Bathroom',
|
|
|
|
'Car',
|
|
|
|
'BuildingArea',
|
|
|
|
'Address'
|
|
|
|
]
|
|
|
|
sells = sells.drop(columns_to_drop, axis=1).dropna()
|
|
|
|
|
|
|
|
# normalize values
|
|
|
|
sells["Price"] = sells["Price"] / sells["Price"].max()
|
|
|
|
sells["Landsize"] = sells["Landsize"] / sells["Landsize"].max()
|
|
|
|
sells["Distance"] = sells["Distance"] / sells["Distance"].max()
|
|
|
|
|
2023-04-21 09:37:13 +02:00
|
|
|
# cut off dataset to fixed number of values
|
|
|
|
cutoff = int(os.environ['CUTOFF'])
|
|
|
|
sells = sells.sample(cutoff)
|
|
|
|
|
2023-04-20 21:01:03 +02:00
|
|
|
# split to train/dev/test subsets
|
|
|
|
X = sells
|
|
|
|
Y = sells.pop('Price')
|
|
|
|
|
|
|
|
X_train, X_temp, Y_train, Y_temp = train_test_split(X, Y, test_size=0.3, random_state=1)
|
|
|
|
X_val, X_test, Y_val, Y_test = train_test_split(X_temp, Y_temp, test_size=0.5, random_state=1)
|
|
|
|
|
|
|
|
# save subsets to files
|
|
|
|
X_train.to_csv('X_train.csv', index=False)
|
|
|
|
X_val.to_csv('X_val.csv', index=False)
|
|
|
|
X_test.to_csv('X_test.csv', index=False)
|
|
|
|
|
|
|
|
Y_train.to_csv('Y_train.csv', index=False)
|
|
|
|
Y_val.to_csv('Y_val.csv', index=False)
|
|
|
|
Y_test.to_csv('Y_test.csv', index=False)
|