import pandas as pd import torch import torch.nn as nn from sklearn.preprocessing import MinMaxScaler from torch.utils.data import TensorDataset from torch.utils.data import DataLoader from sacred import Experiment from sacred.observers import FileStorageObserver, MongoObserver exint = Experiment("ium_z487186", interactive=True) exint.observers.append(FileStorageObserver('my_runs')) # exint.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred')) @exint.config def my_config(): batch_size = 64 learning_rate = 0.001 epochs = 100 @exint.capture def prepare_message(msg): return msg @exint.main def my_main(batch_size, learning_rate, epochs): with exint.open_resource('train.data') as f: train_file = pd.read_csv(f) train_file = train_file.drop('Unnamed: 0', axis=1) df_pandas = train_file.dropna() X_train = df_pandas.drop('class', axis=1) Y_train = df_pandas['class'] scaler = MinMaxScaler() X_train = scaler.fit_transform(X_train) x_tensor = torch.tensor(X_train).float() y_tensor = torch.tensor(Y_train.values).float() train_ds = TensorDataset(x_tensor, y_tensor.unsqueeze(1)) train_dl = DataLoader(train_ds, batch_size=batch_size) class ClassificationModel(nn.Module): def __init__(self, n_input_dim): super(ClassificationModel, self).__init__() self.layer_1 = nn.Linear(n_input_dim, 256) self.layer_2 = nn.Linear(256, 128) self.layer_out = nn.Linear(128, 1) self.relu = nn.ReLU() self.sigmoid = nn.Sigmoid() self.dropout = nn.Dropout(p=0.1) self.batchnorm1 = nn.BatchNorm1d(256) self.batchnorm2 = nn.BatchNorm1d(128) def forward(self, inputs): x = self.relu(self.layer_1(inputs)) x = self.batchnorm1(x) x = self.relu(self.layer_2(x)) x = self.batchnorm2(x) x = self.dropout(x) x = self.sigmoid(self.layer_out(x)) return x model = ClassificationModel(X_train.shape[1]) print(model) loss_func = nn.BCEWithLogitsLoss() optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) model.train() train_loss = [] for epoch in range(epochs): for xb, yb in train_dl: y_pred = model(xb) # Forward Propagation loss = loss_func(y_pred, yb) # Loss Computation optimizer.zero_grad() # Clearing all previous gradients, setting to zero loss.backward() # Back Propagation optimizer.step() # Updating the parameters if epoch % 10 == 0: print(f"Loss in {epoch}. iteration: {loss.item()}") train_loss.append(loss.item()) print('Last iteration loss value: '+str(loss.item())) model_scripted = torch.jit.script(model) # Export to TorchScript model_scripted.save('model_scripted.pt') # Save exint.add_artifact('model_scripted.pt') exint.add_source_file("train.py") exint.run()