2023-05-10 14:08:26 +02:00
|
|
|
import pandas as pd
|
|
|
|
from sklearn.model_selection import train_test_split
|
|
|
|
from sklearn.preprocessing import MinMaxScaler
|
|
|
|
import tensorflow as tf
|
|
|
|
from imblearn.over_sampling import SMOTE
|
|
|
|
|
|
|
|
smote = SMOTE(random_state=42)
|
2023-05-10 15:44:36 +02:00
|
|
|
data = pd.read_csv('Athletes_winter_games.csv', sep=';')
|
2023-05-10 14:08:26 +02:00
|
|
|
|
|
|
|
print('Total rows:', len(data))
|
|
|
|
print('Rows with medal:', len(data.dropna(subset=['Medal'])))
|
|
|
|
|
|
|
|
|
|
|
|
data = pd.get_dummies(data, columns=['Sex', 'Medal'])
|
|
|
|
|
|
|
|
data = data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event'])
|
|
|
|
|
|
|
|
scaler = MinMaxScaler()
|
|
|
|
data = pd.DataFrame(scaler.fit_transform(data), columns=data.columns)
|
|
|
|
|
|
|
|
X = data.filter(regex='Sex|Age')
|
|
|
|
y = data.filter(regex='Medal')
|
|
|
|
y = pd.get_dummies(y)
|
|
|
|
|
|
|
|
X = X.fillna(0)
|
|
|
|
y = y.fillna(0)
|
|
|
|
|
|
|
|
y = y.values
|
|
|
|
|
|
|
|
X_resampled, y_resampled = smote.fit_resample(X, y)
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2, random_state=42)
|
|
|
|
|
|
|
|
model = tf.keras.models.Sequential()
|
|
|
|
model.add(tf.keras.layers.Dense(64, input_dim=X_train.shape[1], activation='relu'))
|
|
|
|
model.add(tf.keras.layers.Dense(32, activation='relu'))
|
|
|
|
model.add(tf.keras.layers.Dense(y.shape[1], activation='softmax'))
|
|
|
|
|
|
|
|
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
|
|
|
|
|
|
|
model.fit(X_train, y_train, epochs=10, batch_size=32)
|
|
|
|
loss, accuracy = model.evaluate(X_test, y_test)
|
|
|
|
print('Test accuracy:', accuracy)
|
|
|
|
|
|
|
|
model.save('model.h5')
|
|
|
|
|
|
|
|
|