t
This commit is contained in:
parent
5499b32f1f
commit
3f421a765b
19
Jenkinsfile
vendored
19
Jenkinsfile
vendored
@ -51,13 +51,11 @@ pipeline {
|
||||
#!/bin/bash
|
||||
pip install kaggle
|
||||
|
||||
kaggle datasets download -d nitishsharma01/olympics-124-years-datasettill-2020
|
||||
|
||||
unzip -o olympics-124-years-datasettill-2020.zip
|
||||
git clone https://git.wmi.amu.edu.pl/s487187/ium_487187.git
|
||||
|
||||
echo "Processed Data" > output.txt
|
||||
'''
|
||||
sh "head -n ${params.CUTOFF} olympics-124-years-datasettill-2020/Athletes_summer_games.csv"
|
||||
sh "head -n ${params.CUTOFF} data.csv"
|
||||
}
|
||||
} catch (err) {
|
||||
error "Failed to build: ${err.message}"
|
||||
@ -66,19 +64,6 @@ pipeline {
|
||||
}
|
||||
}
|
||||
|
||||
stage('Clone Git Repository') {
|
||||
when { expression { params.KAGGLE_USERNAME && params.KAGGLE_KEY } }
|
||||
steps {
|
||||
script {
|
||||
try {
|
||||
git 'https://git.wmi.amu.edu.pl/s487187/ium_487187.git'
|
||||
} catch (err) {
|
||||
error "Failed to clone repository: ${err.message}"
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
stage('End') {
|
||||
when { expression { params.KAGGLE_USERNAME && params.KAGGLE_KEY } }
|
||||
steps {
|
||||
|
@ -47,7 +47,7 @@ pipeline {
|
||||
sh '''
|
||||
#!/bin/bash
|
||||
|
||||
python3 count_lines.py --input_file olympics-124-years-datasettill-2020/Athletes_summer_games.csv > output.txt
|
||||
python3 count_lines.py --input_file olympics-124-years-datasettill-2020/Athletes_winter_games.csv > output.txt
|
||||
'''
|
||||
}
|
||||
}
|
||||
|
@ -12,7 +12,7 @@ pipeline {
|
||||
stage('Pobierz dane') {
|
||||
steps {
|
||||
script {
|
||||
copyArtifacts(projectName: 's487187-create-dataset', filter: '*.csv', target: 'data', fingerprintArtifacts: true)
|
||||
copyArtifacts(projectName: 's487187-create-dataset', filter: '*.csv', target: 'Athletes_winter_games.csv', fingerprintArtifacts: true)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -4,7 +4,7 @@ from sklearn.preprocessing import MinMaxScaler
|
||||
|
||||
model = tf.keras.models.load_model('model.h5')
|
||||
|
||||
data = pd.read_csv('data.csv', sep=';')
|
||||
data = pd.read_csv('Athletes_winter_games.csv', sep=';')
|
||||
|
||||
data = pd.get_dummies(data, columns=['Sex', 'Medal'])
|
||||
data = data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event'])
|
||||
|
2
train.py
2
train.py
@ -5,7 +5,7 @@ import tensorflow as tf
|
||||
from imblearn.over_sampling import SMOTE
|
||||
|
||||
smote = SMOTE(random_state=42)
|
||||
data = pd.read_csv('data.csv', sep=';')
|
||||
data = pd.read_csv('Athletes_winter_games.csv', sep=';')
|
||||
|
||||
print('Total rows:', len(data))
|
||||
print('Rows with medal:', len(data.dropna(subset=['Medal'])))
|
||||
|
Loading…
Reference in New Issue
Block a user