Feat: Code Update
This commit is contained in:
parent
1558a59cdd
commit
4a7ae9e7bc
11
Dockerfile
11
Dockerfile
@ -2,6 +2,15 @@ FROM ubuntu
|
||||
|
||||
RUN apt-get update && apt-get install -y python3 python3-pip unzip
|
||||
|
||||
RUN pip3 install kaggle pandas
|
||||
RUN python3 -m pip install kaggle numpy pandas torchvision torch
|
||||
|
||||
COPY ium_DL.py
|
||||
COPY ./olympics-124-years-datasettill-2020/Athletes_winter_games.csv
|
||||
|
||||
RUN chmod +r ./ium_DL.py
|
||||
RUN chmod +r ./Athletes_winter_games.csv
|
||||
RUN chmod +r ./olympics-124-years-datasettill-2020/Athletes_winter_games.csv
|
||||
|
||||
RUN python3 ./ium_DL.py
|
||||
|
||||
WORKDIR /app
|
34
ium_DL.py
Normal file
34
ium_DL.py
Normal file
@ -0,0 +1,34 @@
|
||||
import tensorflow as tf
|
||||
import pandas as pd
|
||||
|
||||
train_data = pd.read_csv('olympics-124-years-datasettill-2020/Athletes_winter_games.csv')
|
||||
|
||||
X_train = train_data[['Sex']]
|
||||
y_train = train_data['Medal']
|
||||
|
||||
X_train.loc[:, 'Sex'] = X_train['Sex'].map({'M': 0, 'F': 1})
|
||||
y_train = y_train.map({'Bronze': 0, 'Silver': 1, 'Gold': 1}).fillna(0).astype('float32')
|
||||
|
||||
X_train = X_train.astype('float32')
|
||||
y_train = y_train.astype('float32')
|
||||
|
||||
model = tf.keras.Sequential([
|
||||
tf.keras.layers.Dense(16, activation='relu', input_shape=(X_train.shape[1],)),
|
||||
tf.keras.layers.Dense(1, activation='sigmoid')
|
||||
])
|
||||
|
||||
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
|
||||
|
||||
model.fit(X_train, y_train, epochs=10)
|
||||
|
||||
model.save('model.h5')
|
||||
|
||||
|
||||
test_data = pd.read_csv('olympics-124-years-datasettill-2020/Athletes_winter_games.csv')
|
||||
|
||||
test_data.loc[:, 'Sex'] = test_data['Sex'].map({'M': 0, 'F': 1})
|
||||
test_data = test_data[['Sex']].astype('float32')
|
||||
|
||||
predictions = model.predict(test_data)
|
||||
|
||||
pd.DataFrame(predictions).to_csv('predictions.csv', index=False, header=False)
|
144
lab5.ipynb
Normal file
144
lab5.ipynb
Normal file
@ -0,0 +1,144 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 51,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Epoch 1/10\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"C:\\Users\\kmjay\\AppData\\Local\\Temp\\ipykernel_17164\\3575846689.py:9: SettingWithCopyWarning: \n",
|
||||
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
|
||||
"Try using .loc[row_indexer,col_indexer] = value instead\n",
|
||||
"\n",
|
||||
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
|
||||
" X_train.loc[:, 'Sex'] = X_train['Sex'].map({'M': 0, 'F': 1})\n",
|
||||
"C:\\Users\\kmjay\\AppData\\Local\\Temp\\ipykernel_17164\\3575846689.py:9: DeprecationWarning: In a future version, `df.iloc[:, i] = newvals` will attempt to set the values inplace instead of always setting a new array. To retain the old behavior, use either `df[df.columns[i]] = newvals` or, if columns are non-unique, `df.isetitem(i, newvals)`\n",
|
||||
" X_train.loc[:, 'Sex'] = X_train['Sex'].map({'M': 0, 'F': 1})\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1518/1518 [==============================] - 2s 758us/step - loss: 0.3609 - accuracy: 0.9112\n",
|
||||
"Epoch 2/10\n",
|
||||
"1518/1518 [==============================] - 1s 726us/step - loss: 0.2763 - accuracy: 0.9216\n",
|
||||
"Epoch 3/10\n",
|
||||
"1518/1518 [==============================] - 1s 731us/step - loss: 0.2751 - accuracy: 0.9216\n",
|
||||
"Epoch 4/10\n",
|
||||
"1518/1518 [==============================] - 1s 725us/step - loss: 0.2750 - accuracy: 0.9216\n",
|
||||
"Epoch 5/10\n",
|
||||
"1518/1518 [==============================] - 1s 733us/step - loss: 0.2750 - accuracy: 0.9216\n",
|
||||
"Epoch 6/10\n",
|
||||
"1518/1518 [==============================] - 1s 733us/step - loss: 0.2750 - accuracy: 0.9216\n",
|
||||
"Epoch 7/10\n",
|
||||
"1518/1518 [==============================] - 1s 729us/step - loss: 0.2750 - accuracy: 0.9216\n",
|
||||
"Epoch 8/10\n",
|
||||
"1518/1518 [==============================] - 1s 728us/step - loss: 0.2750 - accuracy: 0.9216\n",
|
||||
"Epoch 9/10\n",
|
||||
"1518/1518 [==============================] - 1s 727us/step - loss: 0.2750 - accuracy: 0.9216\n",
|
||||
"Epoch 10/10\n",
|
||||
"1518/1518 [==============================] - 1s 755us/step - loss: 0.2750 - accuracy: 0.9216\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import tensorflow as tf\n",
|
||||
"import pandas as pd\n",
|
||||
"\n",
|
||||
"train_data = pd.read_csv('olympics-124-years-datasettill-2020/Athletes_winter_games.csv')\n",
|
||||
"\n",
|
||||
"X_train = train_data[['Sex']]\n",
|
||||
"y_train = train_data['Medal']\n",
|
||||
"\n",
|
||||
"X_train.loc[:, 'Sex'] = X_train['Sex'].map({'M': 0, 'F': 1})\n",
|
||||
"y_train = y_train.map({'Bronze': 0, 'Silver': 1, 'Gold': 1}).fillna(0).astype('float32')\n",
|
||||
"\n",
|
||||
"X_train = X_train.astype('float32')\n",
|
||||
"y_train = y_train.astype('float32')\n",
|
||||
"\n",
|
||||
"model = tf.keras.Sequential([\n",
|
||||
" tf.keras.layers.Dense(16, activation='relu', input_shape=(X_train.shape[1],)),\n",
|
||||
" tf.keras.layers.Dense(1, activation='sigmoid')\n",
|
||||
"])\n",
|
||||
"\n",
|
||||
"model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])\n",
|
||||
"\n",
|
||||
"model.fit(X_train, y_train, epochs=10)\n",
|
||||
"\n",
|
||||
"model.save('model.h5')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 52,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" 170/1518 [==>...........................] - ETA: 0s"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"C:\\Users\\kmjay\\AppData\\Local\\Temp\\ipykernel_17164\\2746302769.py:3: DeprecationWarning: In a future version, `df.iloc[:, i] = newvals` will attempt to set the values inplace instead of always setting a new array. To retain the old behavior, use either `df[df.columns[i]] = newvals` or, if columns are non-unique, `df.isetitem(i, newvals)`\n",
|
||||
" test_data.loc[:, 'Sex'] = test_data['Sex'].map({'M': 0, 'F': 1})\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"1518/1518 [==============================] - 1s 574us/step\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"test_data = pd.read_csv('olympics-124-years-datasettill-2020/Athletes_winter_games.csv')\n",
|
||||
"\n",
|
||||
"test_data.loc[:, 'Sex'] = test_data['Sex'].map({'M': 0, 'F': 1})\n",
|
||||
"test_data = test_data[['Sex']].astype('float32')\n",
|
||||
"\n",
|
||||
"predictions = model.predict(test_data)\n",
|
||||
"\n",
|
||||
"pd.DataFrame(predictions).to_csv('predictions.csv', index=False, header=False)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.11.3"
|
||||
},
|
||||
"orig_nbformat": 4
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
48564
predictions.csv
Normal file
48564
predictions.csv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user