diff --git a/JenkinsfileEvaluate b/JenkinsfileEvaluate new file mode 100644 index 0000000..38f1883 --- /dev/null +++ b/JenkinsfileEvaluate @@ -0,0 +1,45 @@ +pipeline { + agent { + docker { + image 'python:3.11' + args '-v /root/.cache:/root/.cache -u root' + } + } + parameters { + gitParameter name: 'BRANCH', type: 'PT_BRANCH' + buildSelector(name: 'BUILD_NUMBER', description: 'Wybierz numer buildu', defaultSelector: lastSuccessful()) + } + stages { + stage('Preparation') { + steps { + sh 'pip install pandas tensorflow scikit-learn matplotlib' + } + } + stage('Pobierz dane') { + steps { + script { + copyArtifacts(projectName: 's487187-create-dataset', fingerprintArtifacts: true) + } + } + } + stage('Pobierz model') { + steps { + script { + copyArtifacts(projectName: 's487187-training', selector: specific("${params.BUILD_NUMBER}"), filter: 'model.h5', fingerprintArtifacts: true) + } + } + } + stage('Ewaluuj model') { + steps { + script { + sh "python3 evaluate.py" + } + } + } + stage('Zarchiwizuj wyniki') { + steps { + archiveArtifacts artifacts: 'metrics.txt,plot.png', fingerprint: true + } + } + } +} diff --git a/evaluate.py b/evaluate.py new file mode 100644 index 0000000..e9a75be --- /dev/null +++ b/evaluate.py @@ -0,0 +1,43 @@ +import tensorflow as tf +import pandas as pd +import numpy as np +from sklearn.preprocessing import MinMaxScaler +from sklearn.metrics import accuracy_score, f1_score, mean_squared_error +import matplotlib.pyplot as plt +import os + +model = tf.keras.models.load_model('model.h5') + + +test_data = pd.read_csv('test_data.csv', sep=';') +test_data = pd.get_dummies(test_data, columns=['Sex', 'Medal']) +test_data = test_data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event']) + +scaler = MinMaxScaler() +test_data = pd.DataFrame(scaler.fit_transform(test_data), columns=test_data.columns) + +X_test = test_data.filter(regex='Sex|Age') +y_test = test_data.filter(regex='Medal') +y_test = pd.get_dummies(y_test) + +X_test = X_test.fillna(0) +y_test = y_test.fillna(0) + +y_pred = model.predict(X_test) + +top_1_accuracy = tf.keras.metrics.categorical_accuracy(y_test, y_pred) +top_5_accuracy = tf.keras.metrics.top_k_categorical_accuracy(y_test, y_pred, k=5) + +metrics_file = 'metrics.txt' +if os.path.exists(metrics_file): + metrics_df = pd.read_csv(metrics_file) +else: + metrics_df = pd.DataFrame(columns=['top_1_accuracy', 'top_5_accuracy']) +metrics_df = metrics_df.append({'top_1_accuracy': np.mean(top_1_accuracy), 'top_5_accuracy': np.mean(top_5_accuracy)}, ignore_index=True) +metrics_df.to_csv(metrics_file, index=False) + +plt.figure(figsize=(10, 6)) +plt.plot(metrics_df['top_1_accuracy'], label='Top-1 Accuracy') +plt.plot(metrics_df['top_5_accuracy'], label='Top-5 Accuracy') +plt.legend() +plt.savefig('plot.png') \ No newline at end of file diff --git a/model.h5 b/model.h5 index 9257c3b..9eeaa66 100644 Binary files a/model.h5 and b/model.h5 differ