s
This commit is contained in:
parent
162dcf95ab
commit
bc646e2982
@ -5,16 +5,13 @@ pipeline {
|
|||||||
args '-v /root/.cache:/root/.cache -u root'
|
args '-v /root/.cache:/root/.cache -u root'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
environment {
|
|
||||||
SACRED_IGNORE_GIT = 'TRUE'
|
|
||||||
}
|
|
||||||
parameters {
|
parameters {
|
||||||
string(name: 'EPOCHS', defaultValue: '10', description: 'Liczba Epok')
|
string(name: 'EPOCHS', defaultValue: '10', description: 'Liczba Epok')
|
||||||
}
|
}
|
||||||
stages {
|
stages {
|
||||||
stage('Przygotowania') {
|
stage('Preparation') {
|
||||||
steps {
|
steps {
|
||||||
sh 'pip install pandas tensorflow scikit-learn imbalanced-learn sacred pymongo mlflow'
|
sh 'pip install pandas tensorflow scikit-learn imbalanced-learn sacred pymongo'
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
stage('Pobierz dane') {
|
stage('Pobierz dane') {
|
||||||
@ -27,17 +24,14 @@ pipeline {
|
|||||||
stage('Trenuj model') {
|
stage('Trenuj model') {
|
||||||
steps {
|
steps {
|
||||||
script {
|
script {
|
||||||
sh 'mlflow run . -P epochs=$EPOCHS'
|
// sh "python3 train.py --epochs $EPOCHS"
|
||||||
|
sh "python3 train.py"
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
stage('Zarchiwizuj model') {
|
stage('Zarchiwizuj model') {
|
||||||
steps {
|
steps {
|
||||||
sh '''
|
archiveArtifacts artifacts: 'model.h5', fingerprint: true
|
||||||
mkdir -p model
|
|
||||||
cp -r mlruns/* model/
|
|
||||||
'''
|
|
||||||
archiveArtifacts artifacts: 'model/**', fingerprint: true
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
25
train.py
25
train.py
@ -1,26 +1,22 @@
|
|||||||
from sacred import Experiment
|
from sacred import Experiment
|
||||||
from sacred.observers import MongoObserver
|
from sacred.observers import MongoObserver, FileStorageObserver
|
||||||
import os
|
import os
|
||||||
import mlflow
|
|
||||||
import mlflow.keras
|
|
||||||
from mlflow.models.signature import infer_signature
|
|
||||||
from mlflow.models import Model
|
|
||||||
|
|
||||||
os.environ["SACRED_NO_GIT"] = "1"
|
os.environ["SACRED_NO_GIT"] = "1"
|
||||||
|
|
||||||
ex = Experiment('s487187-training', interactive=True, save_git_info=False)
|
ex = Experiment('s487187-training', interactive=True, save_git_info=False)
|
||||||
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
|
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
|
||||||
|
|
||||||
|
|
||||||
@ex.config
|
@ex.config
|
||||||
def my_config():
|
def my_config():
|
||||||
data_file = 'data.csv'
|
data_file = 'data.csv'
|
||||||
model_file = 'model'
|
model_file = 'model.h5'
|
||||||
epochs = 10
|
epochs = 10
|
||||||
batch_size = 32
|
batch_size = 32
|
||||||
test_size = 0.2
|
test_size = 0.2
|
||||||
random_state = 42
|
random_state = 42
|
||||||
|
|
||||||
|
|
||||||
@ex.capture
|
@ex.capture
|
||||||
def train_model(data_file, model_file, epochs, batch_size, test_size, random_state):
|
def train_model(data_file, model_file, epochs, batch_size, test_size, random_state):
|
||||||
import pandas as pd
|
import pandas as pd
|
||||||
@ -29,11 +25,12 @@ def train_model(data_file, model_file, epochs, batch_size, test_size, random_sta
|
|||||||
import tensorflow as tf
|
import tensorflow as tf
|
||||||
from imblearn.over_sampling import SMOTE
|
from imblearn.over_sampling import SMOTE
|
||||||
|
|
||||||
with mlflow.start_run():
|
|
||||||
|
|
||||||
smote = SMOTE(random_state=random_state)
|
smote = SMOTE(random_state=random_state)
|
||||||
data = pd.read_csv(data_file, sep=';')
|
data = pd.read_csv(data_file, sep=';')
|
||||||
|
|
||||||
|
print('Total rows:', len(data))
|
||||||
|
print('Rows with medal:', len(data.dropna(subset=['Medal'])))
|
||||||
|
|
||||||
data = pd.get_dummies(data, columns=['Sex', 'Medal'])
|
data = pd.get_dummies(data, columns=['Sex', 'Medal'])
|
||||||
data = data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event'])
|
data = data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event'])
|
||||||
|
|
||||||
@ -61,14 +58,10 @@ def train_model(data_file, model_file, epochs, batch_size, test_size, random_sta
|
|||||||
|
|
||||||
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)
|
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)
|
||||||
loss, accuracy = model.evaluate(X_test, y_test)
|
loss, accuracy = model.evaluate(X_test, y_test)
|
||||||
|
print('Test accuracy:', accuracy)
|
||||||
|
print('Test loss:', loss)
|
||||||
|
|
||||||
mlflow.log_metric("loss", loss)
|
model.save(model_file)
|
||||||
mlflow.log_metric("accuracy", accuracy)
|
|
||||||
|
|
||||||
signature = infer_signature(X_train, model.predict(X_train))
|
|
||||||
input_example = Model.log_input_example(X_train.iloc[0])
|
|
||||||
|
|
||||||
mlflow.keras.log_model(model, model_file, signature=signature, input_example=input_example)
|
|
||||||
|
|
||||||
return accuracy
|
return accuracy
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user