This commit is contained in:
Jakub Zaręba 2023-05-11 00:11:04 +02:00
parent 162dcf95ab
commit bc646e2982
2 changed files with 36 additions and 49 deletions

View File

@ -5,16 +5,13 @@ pipeline {
args '-v /root/.cache:/root/.cache -u root' args '-v /root/.cache:/root/.cache -u root'
} }
} }
environment {
SACRED_IGNORE_GIT = 'TRUE'
}
parameters { parameters {
string(name: 'EPOCHS', defaultValue: '10', description: 'Liczba Epok') string(name: 'EPOCHS', defaultValue: '10', description: 'Liczba Epok')
} }
stages { stages {
stage('Przygotowania') { stage('Preparation') {
steps { steps {
sh 'pip install pandas tensorflow scikit-learn imbalanced-learn sacred pymongo mlflow' sh 'pip install pandas tensorflow scikit-learn imbalanced-learn sacred pymongo'
} }
} }
stage('Pobierz dane') { stage('Pobierz dane') {
@ -27,17 +24,14 @@ pipeline {
stage('Trenuj model') { stage('Trenuj model') {
steps { steps {
script { script {
sh 'mlflow run . -P epochs=$EPOCHS' // sh "python3 train.py --epochs $EPOCHS"
sh "python3 train.py"
} }
} }
} }
stage('Zarchiwizuj model') { stage('Zarchiwizuj model') {
steps { steps {
sh ''' archiveArtifacts artifacts: 'model.h5', fingerprint: true
mkdir -p model
cp -r mlruns/* model/
'''
archiveArtifacts artifacts: 'model/**', fingerprint: true
} }
} }
} }

View File

@ -1,26 +1,22 @@
from sacred import Experiment from sacred import Experiment
from sacred.observers import MongoObserver from sacred.observers import MongoObserver, FileStorageObserver
import os import os
import mlflow
import mlflow.keras
from mlflow.models.signature import infer_signature
from mlflow.models import Model
os.environ["SACRED_NO_GIT"] = "1" os.environ["SACRED_NO_GIT"] = "1"
ex = Experiment('s487187-training', interactive=True, save_git_info=False) ex = Experiment('s487187-training', interactive=True, save_git_info=False)
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred')) ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
@ex.config @ex.config
def my_config(): def my_config():
data_file = 'data.csv' data_file = 'data.csv'
model_file = 'model' model_file = 'model.h5'
epochs = 10 epochs = 10
batch_size = 32 batch_size = 32
test_size = 0.2 test_size = 0.2
random_state = 42 random_state = 42
@ex.capture @ex.capture
def train_model(data_file, model_file, epochs, batch_size, test_size, random_state): def train_model(data_file, model_file, epochs, batch_size, test_size, random_state):
import pandas as pd import pandas as pd
@ -29,11 +25,12 @@ def train_model(data_file, model_file, epochs, batch_size, test_size, random_sta
import tensorflow as tf import tensorflow as tf
from imblearn.over_sampling import SMOTE from imblearn.over_sampling import SMOTE
with mlflow.start_run():
smote = SMOTE(random_state=random_state) smote = SMOTE(random_state=random_state)
data = pd.read_csv(data_file, sep=';') data = pd.read_csv(data_file, sep=';')
print('Total rows:', len(data))
print('Rows with medal:', len(data.dropna(subset=['Medal'])))
data = pd.get_dummies(data, columns=['Sex', 'Medal']) data = pd.get_dummies(data, columns=['Sex', 'Medal'])
data = data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event']) data = data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event'])
@ -61,14 +58,10 @@ def train_model(data_file, model_file, epochs, batch_size, test_size, random_sta
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size) model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)
loss, accuracy = model.evaluate(X_test, y_test) loss, accuracy = model.evaluate(X_test, y_test)
print('Test accuracy:', accuracy)
print('Test loss:', loss)
mlflow.log_metric("loss", loss) model.save(model_file)
mlflow.log_metric("accuracy", accuracy)
signature = infer_signature(X_train, model.predict(X_train))
input_example = Model.log_input_example(X_train.iloc[0])
mlflow.keras.log_model(model, model_file, signature=signature, input_example=input_example)
return accuracy return accuracy