s
This commit is contained in:
parent
162dcf95ab
commit
bc646e2982
@ -5,16 +5,13 @@ pipeline {
|
||||
args '-v /root/.cache:/root/.cache -u root'
|
||||
}
|
||||
}
|
||||
environment {
|
||||
SACRED_IGNORE_GIT = 'TRUE'
|
||||
}
|
||||
parameters {
|
||||
string(name: 'EPOCHS', defaultValue: '10', description: 'Liczba Epok')
|
||||
}
|
||||
stages {
|
||||
stage('Przygotowania') {
|
||||
stage('Preparation') {
|
||||
steps {
|
||||
sh 'pip install pandas tensorflow scikit-learn imbalanced-learn sacred pymongo mlflow'
|
||||
sh 'pip install pandas tensorflow scikit-learn imbalanced-learn sacred pymongo'
|
||||
}
|
||||
}
|
||||
stage('Pobierz dane') {
|
||||
@ -27,17 +24,14 @@ pipeline {
|
||||
stage('Trenuj model') {
|
||||
steps {
|
||||
script {
|
||||
sh 'mlflow run . -P epochs=$EPOCHS'
|
||||
// sh "python3 train.py --epochs $EPOCHS"
|
||||
sh "python3 train.py"
|
||||
}
|
||||
}
|
||||
}
|
||||
stage('Zarchiwizuj model') {
|
||||
steps {
|
||||
sh '''
|
||||
mkdir -p model
|
||||
cp -r mlruns/* model/
|
||||
'''
|
||||
archiveArtifacts artifacts: 'model/**', fingerprint: true
|
||||
archiveArtifacts artifacts: 'model.h5', fingerprint: true
|
||||
}
|
||||
}
|
||||
}
|
||||
|
67
train.py
67
train.py
@ -1,26 +1,22 @@
|
||||
from sacred import Experiment
|
||||
from sacred.observers import MongoObserver
|
||||
from sacred.observers import MongoObserver, FileStorageObserver
|
||||
import os
|
||||
import mlflow
|
||||
import mlflow.keras
|
||||
from mlflow.models.signature import infer_signature
|
||||
from mlflow.models import Model
|
||||
|
||||
os.environ["SACRED_NO_GIT"] = "1"
|
||||
|
||||
ex = Experiment('s487187-training', interactive=True, save_git_info=False)
|
||||
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
|
||||
|
||||
|
||||
@ex.config
|
||||
def my_config():
|
||||
data_file = 'data.csv'
|
||||
model_file = 'model'
|
||||
model_file = 'model.h5'
|
||||
epochs = 10
|
||||
batch_size = 32
|
||||
test_size = 0.2
|
||||
random_state = 42
|
||||
|
||||
|
||||
@ex.capture
|
||||
def train_model(data_file, model_file, epochs, batch_size, test_size, random_state):
|
||||
import pandas as pd
|
||||
@ -29,48 +25,45 @@ def train_model(data_file, model_file, epochs, batch_size, test_size, random_sta
|
||||
import tensorflow as tf
|
||||
from imblearn.over_sampling import SMOTE
|
||||
|
||||
with mlflow.start_run():
|
||||
smote = SMOTE(random_state=random_state)
|
||||
data = pd.read_csv(data_file, sep=';')
|
||||
|
||||
smote = SMOTE(random_state=random_state)
|
||||
data = pd.read_csv(data_file, sep=';')
|
||||
print('Total rows:', len(data))
|
||||
print('Rows with medal:', len(data.dropna(subset=['Medal'])))
|
||||
|
||||
data = pd.get_dummies(data, columns=['Sex', 'Medal'])
|
||||
data = data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event'])
|
||||
data = pd.get_dummies(data, columns=['Sex', 'Medal'])
|
||||
data = data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event'])
|
||||
|
||||
scaler = MinMaxScaler()
|
||||
data = pd.DataFrame(scaler.fit_transform(data), columns=data.columns)
|
||||
scaler = MinMaxScaler()
|
||||
data = pd.DataFrame(scaler.fit_transform(data), columns=data.columns)
|
||||
|
||||
X = data.filter(regex='Sex|Age')
|
||||
y = data.filter(regex='Medal')
|
||||
y = pd.get_dummies(y)
|
||||
X = data.filter(regex='Sex|Age')
|
||||
y = data.filter(regex='Medal')
|
||||
y = pd.get_dummies(y)
|
||||
|
||||
X = X.fillna(0)
|
||||
y = y.fillna(0)
|
||||
X = X.fillna(0)
|
||||
y = y.fillna(0)
|
||||
|
||||
y = y.values
|
||||
y = y.values
|
||||
|
||||
X_resampled, y_resampled = smote.fit_resample(X, y)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=test_size, random_state=random_state)
|
||||
X_resampled, y_resampled = smote.fit_resample(X, y)
|
||||
X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=test_size, random_state=random_state)
|
||||
|
||||
model = tf.keras.models.Sequential()
|
||||
model.add(tf.keras.layers.Dense(64, input_dim=X_train.shape[1], activation='relu'))
|
||||
model.add(tf.keras.layers.Dense(32, activation='relu'))
|
||||
model.add(tf.keras.layers.Dense(y.shape[1], activation='softmax'))
|
||||
model = tf.keras.models.Sequential()
|
||||
model.add(tf.keras.layers.Dense(64, input_dim=X_train.shape[1], activation='relu'))
|
||||
model.add(tf.keras.layers.Dense(32, activation='relu'))
|
||||
model.add(tf.keras.layers.Dense(y.shape[1], activation='softmax'))
|
||||
|
||||
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
|
||||
|
||||
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)
|
||||
loss, accuracy = model.evaluate(X_test, y_test)
|
||||
model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)
|
||||
loss, accuracy = model.evaluate(X_test, y_test)
|
||||
print('Test accuracy:', accuracy)
|
||||
print('Test loss:', loss)
|
||||
|
||||
mlflow.log_metric("loss", loss)
|
||||
mlflow.log_metric("accuracy", accuracy)
|
||||
model.save(model_file)
|
||||
|
||||
signature = infer_signature(X_train, model.predict(X_train))
|
||||
input_example = Model.log_input_example(X_train.iloc[0])
|
||||
|
||||
mlflow.keras.log_model(model, model_file, signature=signature, input_example=input_example)
|
||||
|
||||
return accuracy
|
||||
return accuracy
|
||||
|
||||
@ex.main
|
||||
def run_experiment():
|
||||
|
Loading…
Reference in New Issue
Block a user