feat: sacred

This commit is contained in:
Jakub Zaręba 2023-05-10 19:49:38 +02:00
parent b2d430825e
commit cf89b66ba2
2 changed files with 110 additions and 64 deletions

View File

@ -1,44 +1,68 @@
import tensorflow as tf from sacred import Experiment
import pandas as pd from sacred.observers import MongoObserver, FileStorageObserver
import numpy as np
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import accuracy_score, f1_score, mean_squared_error
import matplotlib.pyplot as plt
import os
model = tf.keras.models.load_model('model.h5') ex = Experiment('s487187_experiment', interactive=True)
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
ex.observers.append(FileStorageObserver('results'))
test_data = pd.read_csv('data.csv', sep=';') @ex.config
test_data = pd.get_dummies(test_data, columns=['Sex', 'Medal']) def my_config():
test_data = test_data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event']) model_path = 'model.h5'
test_data_path = 'data.csv'
metrics_file_path = 'metrics.txt'
plot_path = 'plot.png'
scaler = MinMaxScaler() @ex.capture
test_data = pd.DataFrame(scaler.fit_transform(test_data), columns=test_data.columns) def evaluate_model(model_path, test_data_path, metrics_file_path, plot_path):
import tensorflow as tf
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
import os
X_test = test_data.filter(regex='Sex|Age') model = tf.keras.models.load_model(model_path)
y_test = test_data.filter(regex='Medal')
y_test = pd.get_dummies(y_test)
X_test = X_test.fillna(0) test_data = pd.read_csv(test_data_path, sep=';')
y_test = y_test.fillna(0) test_data = pd.get_dummies(test_data, columns=['Sex', 'Medal'])
test_data = test_data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event'])
y_pred = model.predict(X_test) scaler = MinMaxScaler()
test_data = pd.DataFrame(scaler.fit_transform(test_data), columns=test_data.columns)
top_1_accuracy = tf.keras.metrics.categorical_accuracy(y_test, y_pred) X_test = test_data.filter(regex='Sex|Age')
top_5_accuracy = tf.keras.metrics.top_k_categorical_accuracy(y_test, y_pred, k=5) y_test = test_data.filter(regex='Medal')
y_test = pd.get_dummies(y_test)
metrics_file = 'metrics.txt' X_test = X_test.fillna(0)
if os.path.exists(metrics_file): y_test = y_test.fillna(0)
metrics_df = pd.read_csv(metrics_file)
else:
metrics_df = pd.DataFrame(columns=['top_1_accuracy', 'top_5_accuracy'])
new_row = pd.DataFrame([{'top_1_accuracy': np.mean(top_1_accuracy.numpy()), 'top_5_accuracy': np.mean(top_5_accuracy.numpy())}]) y_pred = model.predict(X_test)
metrics_df = pd.concat([metrics_df, new_row], ignore_index=True)
metrics_df.to_csv(metrics_file, index=False)
plt.figure(figsize=(10, 6)) top_1_accuracy = tf.keras.metrics.categorical_accuracy(y_test, y_pred)
plt.plot(metrics_df['top_1_accuracy'], label='Top-1 Accuracy') top_5_accuracy = tf.keras.metrics.top_k_categorical_accuracy(y_test, y_pred, k=5)
plt.plot(metrics_df['top_5_accuracy'], label='Top-5 Accuracy')
plt.legend() if os.path.exists(metrics_file_path):
plt.savefig('plot.png') metrics_df = pd.read_csv(metrics_file_path)
else:
metrics_df = pd.DataFrame(columns=['top_1_accuracy', 'top_5_accuracy'])
new_row = pd.DataFrame([{'top_1_accuracy': np.mean(top_1_accuracy.numpy()), 'top_5_accuracy': np.mean(top_5_accuracy.numpy())}])
metrics_df = pd.concat([metrics_df, new_row], ignore_index=True)
metrics_df.to_csv(metrics_file_path, index=False)
plt.figure(figsize=(10, 6))
plt.plot(metrics_df['top_1_accuracy'], label='Top-1 Accuracy')
plt.plot(metrics_df['top_5_accuracy'], label='Top-5 Accuracy')
plt.legend()
plt.savefig(plot_path)
ex.log_scalar('top_1_accuracy', np.mean(top_1_accuracy.numpy()))
ex.log_scalar('top_5_accuracy', np.mean(top_5_accuracy.numpy()))
ex.add_artifact(model_path)
ex.add_artifact(metrics_file_path)
ex.add_artifact(plot_path)
@ex.automain
def main():
evaluate_model()

View File

@ -1,46 +1,68 @@
import pandas as pd from sacred import Experiment
from sklearn.model_selection import train_test_split from sacred.observers import MongoObserver, FileStorageObserver
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
from imblearn.over_sampling import SMOTE
smote = SMOTE(random_state=42) ex = Experiment('s487187-training')
data = pd.read_csv('data.csv', sep=';') ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred'))
ex.observers.append(FileStorageObserver('results'))
print('Total rows:', len(data)) @ex.config
print('Rows with medal:', len(data.dropna(subset=['Medal']))) def my_config():
data_file = 'data.csv'
model_file = 'model.h5'
epochs = 10
batch_size = 32
test_size = 0.2
random_state = 42
@ex.capture
def train_model(data_file, model_file, epochs, batch_size, test_size, random_state):
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler
import tensorflow as tf
from imblearn.over_sampling import SMOTE
data = pd.get_dummies(data, columns=['Sex', 'Medal']) smote = SMOTE(random_state=random_state)
data = pd.read_csv(data_file, sep=';')
data = data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event']) print('Total rows:', len(data))
print('Rows with medal:', len(data.dropna(subset=['Medal'])))
scaler = MinMaxScaler() data = pd.get_dummies(data, columns=['Sex', 'Medal'])
data = pd.DataFrame(scaler.fit_transform(data), columns=data.columns) data = data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event'])
X = data.filter(regex='Sex|Age') scaler = MinMaxScaler()
y = data.filter(regex='Medal') data = pd.DataFrame(scaler.fit_transform(data), columns=data.columns)
y = pd.get_dummies(y)
X = X.fillna(0) X = data.filter(regex='Sex|Age')
y = y.fillna(0) y = data.filter(regex='Medal')
y = pd.get_dummies(y)
y = y.values X = X.fillna(0)
y = y.fillna(0)
X_resampled, y_resampled = smote.fit_resample(X, y) y = y.values
X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2, random_state=42)
model = tf.keras.models.Sequential() X_resampled, y_resampled = smote.fit_resample(X, y)
model.add(tf.keras.layers.Dense(64, input_dim=X_train.shape[1], activation='relu')) X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=test_size, random_state=random_state)
model.add(tf.keras.layers.Dense(32, activation='relu'))
model.add(tf.keras.layers.Dense(y.shape[1], activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(64, input_dim=X_train.shape[1], activation='relu'))
model.add(tf.keras.layers.Dense(32, activation='relu'))
model.add(tf.keras.layers.Dense(y.shape[1], activation='softmax'))
model.fit(X_train, y_train, epochs=10, batch_size=32) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
loss, accuracy = model.evaluate(X_test, y_test)
print('Test accuracy:', accuracy)
model.save('model.h5') model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)
loss, accuracy = model.evaluate(X_test, y_test)
print('Test accuracy:', accuracy)
model.save(model_file)
return accuracy
@ex.main
def run_experiment():
accuracy = train_model()
ex.log_scalar('accuracy', accuracy)
ex.add_artifact('model.h5')