import tensorflow as tf import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import accuracy_score, f1_score, mean_squared_error import matplotlib.pyplot as plt import os model = tf.keras.models.load_model('model.h5') test_data = pd.read_csv('data.csv', sep=';') test_data = pd.get_dummies(test_data, columns=['Sex', 'Medal']) test_data = test_data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event']) scaler = MinMaxScaler() test_data = pd.DataFrame(scaler.fit_transform(test_data), columns=test_data.columns) X_test = test_data.filter(regex='Sex|Age') y_test = test_data.filter(regex='Medal') y_test = pd.get_dummies(y_test) X_test = X_test.fillna(0) y_test = y_test.fillna(0) y_pred = model.predict(X_test) top_1_accuracy = tf.keras.metrics.categorical_accuracy(y_test, y_pred) top_5_accuracy = tf.keras.metrics.top_k_categorical_accuracy(y_test, y_pred, k=5) metrics_file = 'metrics.txt' if os.path.exists(metrics_file): metrics_df = pd.read_csv(metrics_file) else: metrics_df = pd.DataFrame(columns=['top_1_accuracy', 'top_5_accuracy']) new_row = pd.DataFrame({'top_1_accuracy': np.mean(top_1_accuracy), 'top_5_accuracy': np.mean(top_5_accuracy)}, index=[0]) metrics_df = pd.concat([metrics_df, new_row], ignore_index=True) metrics_df.to_csv(metrics_file, index=False) plt.figure(figsize=(10, 6)) plt.plot(metrics_df['top_1_accuracy'], label='Top-1 Accuracy') plt.plot(metrics_df['top_5_accuracy'], label='Top-5 Accuracy') plt.legend() plt.savefig('plot.png')