import mlflow import mlflow.keras from mlflow.models.signature import infer_signature from mlflow.models import Model import pandas as pd from sacred import Experiment from sacred.observers import MongoObserver, FileStorageObserver import os import tensorflow as tf from tensorflow.python.framework import tensor_spec import numpy as np os.environ["SACRED_NO_GIT"] = "1" ex = Experiment('s487187-training', interactive=True, save_git_info=False) ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred')) mlflow.set_tracking_uri("http://172.17.0.1:5000") mlflow.set_experiment("s487187") @ex.config def my_config(): data_file = 'data.csv' model_file = 'model.h5' epochs = 10 batch_size = 32 test_size = 0.2 random_state = 42 @ex.capture def train_model(data_file, model_file, epochs, batch_size, test_size, random_state): import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import tensorflow as tf from imblearn.over_sampling import SMOTE smote = SMOTE(random_state=random_state) data = pd.read_csv(data_file, sep=';', header=0) print('Total rows:', len(data)) print('Rows with medal:', len(data.dropna(subset=['Medal']))) data = pd.get_dummies(data, columns=['Sex', 'Medal']) data = data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event']) scaler = MinMaxScaler() data = pd.DataFrame(scaler.fit_transform(data), columns=data.columns) X = data.filter(regex='Sex|Age') y = data.filter(regex='Medal') y = pd.get_dummies(y) X = X.fillna(0) y = y.fillna(0) y = y.values X_resampled, y_resampled = smote.fit_resample(X, y) X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=test_size, random_state=random_state) model = tf.keras.models.Sequential() model.add(tf.keras.layers.Dense(64, input_dim=X_train.shape[1], activation='relu')) model.add(tf.keras.layers.Dense(32, activation='relu')) model.add(tf.keras.layers.Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size) loss, accuracy = model.evaluate(X_test, y_test) print('Test accuracy:', accuracy) print('Test loss:', loss) model.save("model.h5") X_train_numpy = X_train.values signature = infer_signature(X_train_numpy, model.predict(X_train_numpy)) input_example = X_train.head(1).values # input_signature = { # 'input': tensor_spec.TensorSpec(shape=X_train.iloc[0].shape, dtype=X_train.dtypes[0]) # } mlflow.keras.log_model(model, "model") mlflow.log_artifact("model.h5") # Use the ndarray form for infer_signature and input_example signature = infer_signature(X_train_numpy, model.predict(X_train_numpy)) input_example = X_train.head(1).values mlflow.keras.save_model(model, "model", signature=signature, input_example=input_example) return accuracy @ex.main def run_experiment(): accuracy = train_model() ex.log_scalar('accuracy', accuracy) ex.add_artifact('model.h5') ex.run()