from sacred import Experiment from sacred.observers import MongoObserver, FileStorageObserver ex = Experiment('s487187-training', interactive=True) ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred')) @ex.config def my_config(): data_file = 'data.csv' model_file = 'model.h5' epochs = 10 batch_size = 32 test_size = 0.2 random_state = 42 @ex.capture def train_model(data_file, model_file, epochs, batch_size, test_size, random_state): import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler import tensorflow as tf from imblearn.over_sampling import SMOTE smote = SMOTE(random_state=random_state) data = pd.read_csv(data_file, sep=';') print('Total rows:', len(data)) print('Rows with medal:', len(data.dropna(subset=['Medal']))) data = pd.get_dummies(data, columns=['Sex', 'Medal']) data = data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event']) scaler = MinMaxScaler() data = pd.DataFrame(scaler.fit_transform(data), columns=data.columns) X = data.filter(regex='Sex|Age') y = data.filter(regex='Medal') y = pd.get_dummies(y) X = X.fillna(0) y = y.fillna(0) y = y.values X_resampled, y_resampled = smote.fit_resample(X, y) X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=test_size, random_state=random_state) model = tf.keras.models.Sequential() model.add(tf.keras.layers.Dense(64, input_dim=X_train.shape[1], activation='relu')) model.add(tf.keras.layers.Dense(32, activation='relu')) model.add(tf.keras.layers.Dense(y.shape[1], activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size) loss, accuracy = model.evaluate(X_test, y_test) print('Test accuracy:', accuracy) model.save(model_file) return accuracy @ex.main def run_experiment(): accuracy = train_model() ex.log_scalar('accuracy', accuracy) ex.add_artifact('model.h5') ex.run()