from sacred import Experiment from sacred.observers import MongoObserver, FileStorageObserver ex = Experiment('s487187-evaluate', interactive=True) ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@172.17.0.1:27017', db_name='sacred')) @ex.config def my_config(): model_path = 'model.h5' test_data_path = 'data.csv' metrics_file_path = 'metrics.txt' plot_path = 'plot.png' @ex.capture def evaluate_model(model_path, test_data_path, metrics_file_path, plot_path): import tensorflow as tf import pandas as pd import numpy as np from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import os model = tf.keras.models.load_model(model_path) test_data = pd.read_csv(test_data_path, sep=';') test_data = pd.get_dummies(test_data, columns=['Sex', 'Medal']) test_data = test_data.drop(columns=['Name', 'Team', 'NOC', 'Games', 'Year', 'Season', 'City', 'Sport', 'Event']) scaler = MinMaxScaler() test_data = pd.DataFrame(scaler.fit_transform(test_data), columns=test_data.columns) X_test = test_data.filter(regex='Sex|Age') y_test = test_data.filter(regex='Medal') y_test = pd.get_dummies(y_test) X_test = X_test.fillna(0) y_test = y_test.fillna(0) y_pred = model.predict(X_test) top_1_accuracy = tf.keras.metrics.categorical_accuracy(y_test, y_pred) top_5_accuracy = tf.keras.metrics.top_k_categorical_accuracy(y_test, y_pred, k=5) if os.path.exists(metrics_file_path): metrics_df = pd.read_csv(metrics_file_path) else: metrics_df = pd.DataFrame(columns=['top_1_accuracy', 'top_5_accuracy']) new_row = pd.DataFrame([{'top_1_accuracy': np.mean(top_1_accuracy.numpy()), 'top_5_accuracy': np.mean(top_5_accuracy.numpy())}]) metrics_df = pd.concat([metrics_df, new_row], ignore_index=True) metrics_df.to_csv(metrics_file_path, index=False) plt.figure(figsize=(10, 6)) plt.plot(metrics_df['top_1_accuracy'], label='Top-1 Accuracy') plt.plot(metrics_df['top_5_accuracy'], label='Top-5 Accuracy') plt.legend() plt.savefig(plot_path) ex.log_scalar('top_1_accuracy', np.mean(top_1_accuracy.numpy())) ex.log_scalar('top_5_accuracy', np.mean(top_5_accuracy.numpy())) ex.add_artifact(model_path) ex.add_artifact(metrics_file_path) ex.add_artifact(plot_path) @ex.automain def main(): evaluate_model()