pipeline { agent any environment { PATH = "/path/to/your/python/bin:${env.PATH}" SACRED_IGNORE_GIT = 'TRUE' } parameters { string(name: 'EPOCHS', defaultValue: '10', description: 'Liczba Epok') } stages { stage('Przygotowanie') { steps { sh 'pip install pandas tensorflow scikit-learn imbalanced-learn sacred pymongo mlflow' } } stage('Pobierz dane') { steps { script { copyArtifacts(projectName: 's487187-create-dataset', fingerprintArtifacts: true) } } } stage('Trenuj model') { steps { script { sh 'mlflow run . -P epochs=$EPOCHS' } } } stage('Zarchiwizuj model') { steps { sh ''' mkdir -p model cp -r mlruns/* model/ ''' archiveArtifacts artifacts: 'model/**', fingerprint: true } } } }