SystemyRozmyte/data_filters.py

169 lines
6.3 KiB
Python
Raw Normal View History

2024-01-06 20:36:34 +01:00
import pandas as pd
from simpful import *
2024-01-27 20:16:01 +01:00
FS = FuzzySystem()
2024-01-06 20:36:34 +01:00
def generateTrainingData(dataframe):
columns = ['season','date','home_team','away_team','result_full','home_passes','away_passes',
'home_possession','away_possession','home_shots','away_shots']
return dataframe[columns]
def generateFuzzyLogicData(dataframe):
columns = ['season','date','home_team','away_team','result_full','c_home_form_5m','c_away_form_5m',#,'c_home_passes','c_away_passes',
# 'c_home_possession','c_away_possession','c_home_shots','c_away_shots',
2024-01-27 20:16:01 +01:00
'c_home_diff_5m', 'c_away_diff_5m', 'c_home_aggression_5m',
'c_away_aggression_5m', 'c_home_aggression_season', 'c_away_aggression_season',
'c_home_form_season','c_away_form_season',
'c_home_diff_season', 'c_away_diff_season']
2024-01-06 20:36:34 +01:00
return dataframe[columns]
2024-01-27 20:16:01 +01:00
def calculateFuzzyAggression(yellow_cards, red_cards):
FS.set_crisp_output_value("low", 0.0)
FS.set_crisp_output_value("average", 0.5)
FS.set_crisp_output_value("high", 1.0)
Yellow_cards1 = TriangleFuzzySet(0, 2, 3, term="low")
Yellow_cards2 = TriangleFuzzySet(2, 3, 4, term="average")
Yellow_cards3 = TriangleFuzzySet(3, 4, 4, term="high")
FS.add_linguistic_variable("yellow_cards", LinguisticVariable([Yellow_cards1, Yellow_cards2, Yellow_cards3], universe_of_discourse=[0, 10]))
Red_cards1 = TriangleFuzzySet(0, 0, 1, term="low")
Red_cards2 = TriangleFuzzySet(0, 1, 2, term="average")
Red_cards3 = TriangleFuzzySet(1, 2, 2, term="high")
FS.add_linguistic_variable("red_cards", LinguisticVariable([Red_cards1, Red_cards2, Red_cards3], universe_of_discourse=[0, 4]))
# Pass_domination1 = TriangleFuzzySet(2,2,6, term="low")
# Pass_domination2 = TriangleFuzzySet(3,5,7, term="average")
# Pass_domination3 = TriangleFuzzySet(4,8,8, term="high")
# FS.add_linguistic_variable("passes_domination", LinguisticVariable([Pass_domination1, Pass_domination2, Pass_domination3], universe_of_discourse=[0,10]))
FS.add_rules([
"IF (yellow_cards IS low) AND (red_cards IS low) THEN (aggression IS low)",
"IF (yellow_cards IS high) AND (red_cards IS high) THEN (aggression IS high)",
"IF (yellow_cards IS average) AND (red_cards IS average) THEN (aggression IS average)",
"IF (yellow_cards IS low) AND (red_cards IS high) THEN (aggression IS high)",
"IF (yellow_cards IS high ) AND (red_cards IS low) THEN (aggression IS high)",
"IF (yellow_cards IS average) AND (red_cards IS high) THEN (aggression IS high)",
"IF (yellow_cards IS high) AND (red_cards IS average) THEN (aggression IS high)",
"IF (yellow_cards IS low) AND (red_cards IS average) THEN (aggression IS low)",
"IF (yellow_cards IS average) AND (red_cards IS low) THEN (aggression IS average)"
])
FS.set_variable("yellow_cards", yellow_cards)
FS.set_variable("red_cards", red_cards)
aggression = FS.inference()
return aggression
2024-01-06 20:36:34 +01:00
def last5Matches(season, teamA, data, df):
# Wybierz rekordy dla danej pary drużyn i sezonu
subset = df[((df['season'] == season) & ((df['home_team'] == teamA) | (df['away_team'] == teamA)))]
# Filtruj dane, aby zawierały te przed daną datą
before_given_date = subset[pd.to_datetime(subset['date']) < pd.to_datetime(data)]
# Posortuj wg daty w odwrotnej kolejności
before_given_date = before_given_date.sort_values(by='date', ascending=False)
# Wybierz 5 ostatnich przed daną datą
last_before_date = before_given_date.head(5)
return last_before_date
def last5MatchesBtwTeams(teamA, teamB, data, df):
subset = df[(((df['home_team'] == teamA) | (df['away_team'] == teamA)) & ((df['home_team'] == teamB) | (df['away_team'] == teamB)))]
before_given_date = subset[pd.to_datetime(subset['date']) < pd.to_datetime(data)]
before_given_date = before_given_date.sort_values(by='date', ascending=False)
last_before_date = before_given_date.head(5)
return last_before_date
2024-01-06 20:36:34 +01:00
2024-01-21 22:31:56 +01:00
def seasonMatches(season, teamA, data, df):
# Wybierz rekordy dla danej pary drużyn i sezonu
subset = df[((df['season'] == season) & ((df['home_team'] == teamA) | (df['away_team'] == teamA)))]
# Filtruj dane, aby zawierały te przed daną datą
before_given_date = subset[pd.to_datetime(subset['date']) < pd.to_datetime(data)]
# Posortuj wg daty w odwrotnej kolejności
before_given_date = before_given_date.sort_values(by='date', ascending=False)
2024-01-06 20:36:34 +01:00
2024-01-21 22:31:56 +01:00
return before_given_date
2024-01-06 20:36:34 +01:00
def getResult(score,teamHome):
x,y = score.split('-')
x = int(x)
y = int(y)
if (x > y and teamHome == True) or (x < y and teamHome == False):
return "win"
elif x == y:
return "draw"
else:
return "loss"
2024-01-27 20:16:01 +01:00
def calculateAggression(matches, team):
aggression = 0
for index, row in matches.iterrows():
if team == row['home_team']:
yellow_cards = row['home_yellow_cards']
red_cards = row['home_red_cards']
else:
yellow_cards = row['away_yellow_cards']
red_cards = row['away_red_cards']
aggression_result = calculateFuzzyAggression(yellow_cards, red_cards)
#print(aggression_result['aggression'])
aggression = aggression + aggression_result['aggression']
if matches.shape[0] != 0:
aggression_avg = aggression / matches.shape[0]
else:
aggression_avg = 0
return aggression_avg
2024-01-06 20:36:34 +01:00
def calculatePoints(matches, team):
points = 0
for index, row in matches.iterrows():
if team == row['home_team']:
teamHome = True
else:
teamHome = False
x = getResult(row['result_full'], teamHome)
#print(x)
if x == "win":
points = points + 3
elif x == "draw":
points = points + 1
if matches.shape[0] != 0:
points_avg = points / matches.shape[0]
else:
points_avg = 0
return points_avg
def calculateGoalDifference(matches, team):
goal_diff = 0
for index, row in matches.iterrows():
if team == row['home_team']:
teamHome = True
else:
teamHome = False
x,y = row['result_full'].split('-')
x = int(x)
y = int(y)
if teamHome:
goal_diff = goal_diff + (x-y)
else:
goal_diff = goal_diff + (y-x)
return goal_diff