import simpful from data_filters import * import pandas as pd FS = FuzzySystem() # Dominacja OK # Jakość strzałów - Witek # Agresesywnosc (zolte + czerwone kartki) - Wojtek # odbiory i wslizgi (xDef) - Michał, ekspert od xDef # statystyki z calego sezonu - Wojtek OK # 5 ostatnich spotkan miedzy druzynami - Witek def categorize_fuzzy_passes(passes,possession): FS.set_crisp_output_value("low", 0.0) FS.set_crisp_output_value("average", 0.5) FS.set_crisp_output_value("high", 1.0) Pass1 = TriangleFuzzySet(300,300,500, term="low") Pass2 = TriangleFuzzySet(300,450,600, term="average") Pass3 = TriangleFuzzySet(400,600,600, term="high") FS.add_linguistic_variable("passes", LinguisticVariable([Pass1, Pass2, Pass3], universe_of_discourse=[0,1000])) Poss1 = TriangleFuzzySet(30,30,45, term="low") Poss2 = TriangleFuzzySet(40,50,60, term="average") Poss3 = TriangleFuzzySet(55,70,70, term="high") FS.add_linguistic_variable("possession", LinguisticVariable([Poss1, Poss2, Poss3], universe_of_discourse=[0,100])) #Pass_domination1 = TriangleFuzzySet(2,2,6, term="low") #Pass_domination2 = TriangleFuzzySet(3,5,7, term="average") #Pass_domination3 = TriangleFuzzySet(4,8,8, term="high") #FS.add_linguistic_variable("passes_domination", LinguisticVariable([Pass_domination1, Pass_domination2, Pass_domination3], universe_of_discourse=[0,10])) FS.add_rules([ "IF (passes IS low) AND (possession IS low) THEN (pass_domination IS low)", "IF (passes IS high) AND (possession IS high) THEN (pass_domination IS high)", "IF (passes IS average) AND (possession IS average) THEN (pass_domination IS average)", "IF (passes IS low) AND (possession IS high) THEN (pass_domination IS average)", "IF (passes IS high ) AND (possession IS low) THEN (pass_domination IS average)", "IF (passes IS average) AND (possession IS high) THEN (pass_domination IS high)", "IF (passes IS high) AND (possession IS average) THEN (pass_domination IS high)", "IF (passes IS low) AND (possession IS average) THEN (pass_domination IS low)", "IF (passes IS average) AND (possession IS low) THEN (pass_domination IS average)" ]) FS.set_variable("passes", passes) FS.set_variable("possession", possession) pass_domination = FS.inference() return pass_domination def categorize_fuzzy_shots(shots_overall, shots_on_target): FS.set_crisp_output_value("low", 0.0) FS.set_crisp_output_value("average", 0.5) FS.set_crisp_output_value("high", 1.0) Shot_ov1 = TriangleFuzzySet(0,0,5, term="low") #pozmieniać przedziały (nakładają się) Shot_ov2 = TriangleFuzzySet(5,10,15, term="medium") Shot_ov3 = TriangleFuzzySet(15,25,25, term="high") FS.add_linguistic_variable("shots_overall", LinguisticVariable([Shot_ov1, Shot_ov2, Shot_ov3], universe_of_discourse=[0,35])) Shot_ont1 = TriangleFuzzySet(0,0,2, term="low") Shot_ont2 = TriangleFuzzySet(2,4,6, term="medium") Shot_ont3 = TriangleFuzzySet(6,10,10, term="high") FS.add_linguistic_variable("shots_on_target", LinguisticVariable([Shot_ont1, Shot_ont2, Shot_ont3], universe_of_discourse=[0,15])) #Qual_of_shots1 = TriangleFuzzySet(0,0,0.3, term="low") #Qual_of_shots2 = TriangleFuzzySet(0.2,0.5,0.8, term="medium") #Qual_of_shots3 = TriangleFuzzySet(0.7,1,1, term="high") #FS.add_linguistic_variable("expected_goals", LinguisticVariable([Qual_of_shots1, Qual_of_shots2, Qual_of_shots3], universe_of_discourse=[0,1])) FS.add_rules([ "IF (shots_overall IS low) AND (shots_on_target IS low) THEN (quality_of_shots IS low)", "IF (shots_overall IS high) AND (shots_on_target IS high) THEN (quality_of_shots IS high)", "IF (shots_overall IS average) AND (shots_on_target IS average) THEN (quality_of_shots IS average)", "IF (shots_overall IS low) AND (shots_on_target IS high) THEN (quality_of_shots IS high)", "IF (shots_overall IS high ) AND (shots_on_target IS low) THEN (quality_of_shots IS low)", "IF (shots_overall IS average) AND (shots_on_target IS high) THEN (quality_of_shots IS high)", "IF (shots_overall IS high) AND (shots_on_target IS average) THEN (quality_of_shots IS average)", "IF (shots_overall IS low) AND (shots_on_target IS average) THEN (quality_of_shots IS average)", "IF (shots_overall IS average) AND (shots_on_target IS low) THEN (quality_of_shots IS low)" ]) def categorize_shots(shots): if shots >= 12: return 2 elif shots <= 6: return 0 else: return 1 def categorize_passes(pass_count): if pass_count < 400: return 0 #słabo elif 400 <= pass_count <= 500: return 1 #średnio else: return 2 #dużo def categorize_possesion(shots): if shots >= 56: return 2 elif shots <= 40: return 0 else: return 1 def categorize_points(data, row, teamHome, matches_type): if teamHome: data_5 = matches_type(row['season'], row['home_team'], row['date'], data) points = calculatePoints(data_5,row['home_team']) else: data_5 = matches_type(row['season'], row['away_team'], row['date'], data) points = calculatePoints(data_5,row['away_team']) if points <=1: return 0 elif points >=2: return 2 else: return 1 def get_method(data, home_away, method, matches_type): values = [] for index, row in data.iterrows(): values.append(method(data, row, home_away, matches_type)) return values def get_points_home(data): points = [] for index, row in data.iterrows(): points.append(categorize_points(data, row, True)) return points def get_points_away(data): points = [] for index, row in data.iterrows(): points.append(categorize_points(data, row, False)) return points def categorize_diff(data, row, teamHome, matches_type): if teamHome: data_5 = matches_type(row['season'], row['home_team'], row['date'], data) diff = calculateGoalDifference(data_5,row['home_team']) else: data_5 = matches_type(row['season'], row['away_team'], row['date'], data) diff = calculateGoalDifference(data_5,row['away_team']) if diff <=0: return 0 else: return 1 def get_diff_home(data): points = [] for index, row in data.iterrows(): points.append(categorize_diff(data, row, True)) return points def get_diff_away(data): points = [] for index, row in data.iterrows(): points.append(categorize_diff(data, row, False)) return points def add_column(data_frame, transform_function, new_column, existing_column=None): if existing_column != None: new_column_values = data_frame[existing_column].apply(transform_function) data_frame[new_column] = new_column_values else: new_column_values = transform_function data_frame[new_column] = new_column_values return data_frame def get_result_list(df, home_team): results = [] for score in df['result_full']: results.append(getResult(score,home_team)) return results