first commit
This commit is contained in:
commit
b7e9ff1cbf
479
custom_model.py
Normal file
479
custom_model.py
Normal file
@ -0,0 +1,479 @@
|
|||||||
|
import logging
|
||||||
|
from typing import Optional, Tuple, Union
|
||||||
|
|
||||||
|
import torch
|
||||||
|
from torch import nn
|
||||||
|
from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss
|
||||||
|
from transformers import GPT2Model, GPT2ForSequenceClassification, RobertaForSequenceClassification, RobertaModel
|
||||||
|
from transformers.modeling_outputs import SequenceClassifierOutputWithPast, SequenceClassifierOutput
|
||||||
|
|
||||||
|
|
||||||
|
LOGGER = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
# RoBERTa - simple example
|
||||||
|
|
||||||
|
|
||||||
|
class RobertaClassificationHeadCustomSimple(nn.Module):
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__()
|
||||||
|
hidden_size = config.hidden_size
|
||||||
|
self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size)
|
||||||
|
self.dense_2 = nn.Linear(2 * hidden_size, hidden_size)
|
||||||
|
classifier_dropout = (
|
||||||
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
||||||
|
)
|
||||||
|
self.dropout = nn.Dropout(classifier_dropout)
|
||||||
|
self.out_proj = nn.Linear(hidden_size, config.num_labels)
|
||||||
|
|
||||||
|
def forward(self, features, **kwargs):
|
||||||
|
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
||||||
|
|
||||||
|
x = self.dense_1(x)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
|
||||||
|
x = self.dense_2(x)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
|
||||||
|
x = self.out_proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class RobertaForSequenceClassificationCustomSimple(RobertaForSequenceClassification):
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__(config)
|
||||||
|
self.num_labels = config.num_labels
|
||||||
|
self.config = config
|
||||||
|
|
||||||
|
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
||||||
|
self.classifier = RobertaClassificationHeadCustomSimple(config)
|
||||||
|
|
||||||
|
# Initialize weights and apply final processing
|
||||||
|
self.post_init()
|
||||||
|
|
||||||
|
|
||||||
|
# RoBERTa - Example 1
|
||||||
|
|
||||||
|
|
||||||
|
class RobertaClassificationHeadCustom(nn.Module):
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__()
|
||||||
|
hidden_size = config.hidden_size * 2
|
||||||
|
|
||||||
|
self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size)
|
||||||
|
self.dense_2 = nn.Linear(2 * hidden_size, hidden_size)
|
||||||
|
classifier_dropout = (
|
||||||
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
||||||
|
)
|
||||||
|
self.dropout = nn.Dropout(classifier_dropout)
|
||||||
|
self.out_proj = nn.Linear(hidden_size, config.num_labels)
|
||||||
|
|
||||||
|
def forward(self, features, **kwargs):
|
||||||
|
if "hidden_states" in kwargs and kwargs["hidden_states"] is not None:
|
||||||
|
x = torch.cat(
|
||||||
|
(
|
||||||
|
features[:, 0, :],
|
||||||
|
# take <s> token (equiv. to [CLS]) from hidden states from last layer
|
||||||
|
kwargs["hidden_states"][-2][:, 0, :],
|
||||||
|
),
|
||||||
|
dim=1,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
raise RuntimeError("Missing hidden state to process forward")
|
||||||
|
|
||||||
|
x = self.dense_1(x)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
|
||||||
|
x = self.dense_2(x)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
|
||||||
|
x = self.out_proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class RobertaForSequenceClassificationCustom(RobertaForSequenceClassification):
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__(config)
|
||||||
|
self.num_labels = config.num_labels
|
||||||
|
self.config = config
|
||||||
|
|
||||||
|
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
||||||
|
self.classifier = RobertaClassificationHeadCustom(config)
|
||||||
|
|
||||||
|
# Initialize weights and apply final processing
|
||||||
|
self.post_init()
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: Optional[torch.LongTensor] = None,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
labels: Optional[torch.LongTensor] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
outputs = self.roberta(
|
||||||
|
input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
token_type_ids=token_type_ids,
|
||||||
|
position_ids=position_ids,
|
||||||
|
head_mask=head_mask,
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=self.config.use_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
)
|
||||||
|
sequence_output = outputs[0]
|
||||||
|
logits = self.classifier(sequence_output, hidden_states=outputs.hidden_states)
|
||||||
|
del outputs.hidden_states
|
||||||
|
|
||||||
|
loss = None
|
||||||
|
if labels is not None:
|
||||||
|
# move labels to correct device to enable model parallelism
|
||||||
|
labels = labels.to(logits.device)
|
||||||
|
if self.config.problem_type is None:
|
||||||
|
if self.num_labels == 1:
|
||||||
|
self.config.problem_type = "regression"
|
||||||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||||
|
self.config.problem_type = "single_label_classification"
|
||||||
|
else:
|
||||||
|
self.config.problem_type = "multi_label_classification"
|
||||||
|
|
||||||
|
if self.config.problem_type == "regression":
|
||||||
|
loss_fct = MSELoss()
|
||||||
|
if self.num_labels == 1:
|
||||||
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||||||
|
else:
|
||||||
|
loss = loss_fct(logits, labels)
|
||||||
|
elif self.config.problem_type == "single_label_classification":
|
||||||
|
loss_fct = CrossEntropyLoss()
|
||||||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||||||
|
elif self.config.problem_type == "multi_label_classification":
|
||||||
|
loss_fct = BCEWithLogitsLoss()
|
||||||
|
loss = loss_fct(logits, labels)
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
output = (logits,) + outputs[2:]
|
||||||
|
return ((loss,) + output) if loss is not None else output
|
||||||
|
|
||||||
|
return SequenceClassifierOutput(
|
||||||
|
loss=loss,
|
||||||
|
logits=logits,
|
||||||
|
hidden_states=outputs.hidden_states,
|
||||||
|
attentions=outputs.attentions,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# RoBERTa - Example 2
|
||||||
|
|
||||||
|
|
||||||
|
class RobertaClassificationHeadCustomAlternative(nn.Module):
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__()
|
||||||
|
hidden_size = config.hidden_size
|
||||||
|
|
||||||
|
self.dense_1_input = nn.Linear(hidden_size, 2 * hidden_size)
|
||||||
|
self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size)
|
||||||
|
self.dense_2 = nn.Linear(4 * hidden_size, hidden_size)
|
||||||
|
classifier_dropout = (
|
||||||
|
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
||||||
|
)
|
||||||
|
self.dropout = nn.Dropout(classifier_dropout)
|
||||||
|
self.out_proj = nn.Linear(hidden_size, config.num_labels)
|
||||||
|
|
||||||
|
def forward(self, features, **kwargs):
|
||||||
|
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
|
||||||
|
if "hidden_states" in kwargs and kwargs["hidden_states"] is not None:
|
||||||
|
# take <s> token (equiv. to [CLS]) from hidden states from last layer
|
||||||
|
hidden = kwargs["hidden_states"][-1][:, 0, :]
|
||||||
|
else:
|
||||||
|
raise RuntimeError("Missing hidden state to process forward")
|
||||||
|
|
||||||
|
x = self.dense_1_input(x)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
|
||||||
|
hidden = self.dense_1_hidden(hidden)
|
||||||
|
hidden = torch.relu(hidden)
|
||||||
|
hidden = self.dropout(hidden)
|
||||||
|
|
||||||
|
x = torch.cat((x, hidden), dim=1)
|
||||||
|
x = self.dense_2(x)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
|
||||||
|
x = self.out_proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class RobertaForSequenceClassificationCustomAlternative(RobertaForSequenceClassification):
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__(config)
|
||||||
|
self.num_labels = config.num_labels
|
||||||
|
self.config = config
|
||||||
|
|
||||||
|
self.roberta = RobertaModel(config, add_pooling_layer=False)
|
||||||
|
self.classifier = RobertaClassificationHeadCustomAlternative(config)
|
||||||
|
|
||||||
|
# Initialize weights and apply final processing
|
||||||
|
self.post_init()
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: Optional[torch.LongTensor] = None,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
labels: Optional[torch.LongTensor] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
outputs = self.roberta(
|
||||||
|
input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
token_type_ids=token_type_ids,
|
||||||
|
position_ids=position_ids,
|
||||||
|
head_mask=head_mask,
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=self.config.use_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
)
|
||||||
|
sequence_output = outputs[0]
|
||||||
|
logits = self.classifier(sequence_output, hidden_states=outputs.hidden_states)
|
||||||
|
del outputs.hidden_states
|
||||||
|
|
||||||
|
loss = None
|
||||||
|
if labels is not None:
|
||||||
|
# move labels to correct device to enable model parallelism
|
||||||
|
labels = labels.to(logits.device)
|
||||||
|
if self.config.problem_type is None:
|
||||||
|
if self.num_labels == 1:
|
||||||
|
self.config.problem_type = "regression"
|
||||||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||||
|
self.config.problem_type = "single_label_classification"
|
||||||
|
else:
|
||||||
|
self.config.problem_type = "multi_label_classification"
|
||||||
|
|
||||||
|
if self.config.problem_type == "regression":
|
||||||
|
loss_fct = MSELoss()
|
||||||
|
if self.num_labels == 1:
|
||||||
|
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
||||||
|
else:
|
||||||
|
loss = loss_fct(logits, labels)
|
||||||
|
elif self.config.problem_type == "single_label_classification":
|
||||||
|
loss_fct = CrossEntropyLoss()
|
||||||
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
||||||
|
elif self.config.problem_type == "multi_label_classification":
|
||||||
|
loss_fct = BCEWithLogitsLoss()
|
||||||
|
loss = loss_fct(logits, labels)
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
output = (logits,) + outputs[2:]
|
||||||
|
return ((loss,) + output) if loss is not None else output
|
||||||
|
|
||||||
|
return SequenceClassifierOutput(
|
||||||
|
loss=loss,
|
||||||
|
logits=logits,
|
||||||
|
hidden_states=outputs.hidden_states,
|
||||||
|
attentions=outputs.attentions,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# GPT-2 - simple example #
|
||||||
|
|
||||||
|
|
||||||
|
class GPT2ClassificationHeadCustomSimple(nn.Module):
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__()
|
||||||
|
hidden_size = config.n_embd
|
||||||
|
self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size)
|
||||||
|
self.dense_2 = nn.Linear(2 * hidden_size, hidden_size)
|
||||||
|
self.dropout = nn.Dropout(config.resid_pdrop)
|
||||||
|
self.out_proj = nn.Linear(hidden_size, config.num_labels, bias=False)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.dense_1(x)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
|
||||||
|
x = self.dense_2(x)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
|
||||||
|
x = self.out_proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class GPT2ForSequenceClassificationCustomSimple(GPT2ForSequenceClassification):
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__(config)
|
||||||
|
self.num_labels = config.num_labels
|
||||||
|
self.transformer = GPT2Model(config)
|
||||||
|
self.score = GPT2ClassificationHeadCustomSimple(config)
|
||||||
|
|
||||||
|
# Model parallel
|
||||||
|
self.model_parallel = False
|
||||||
|
self.device_map = None
|
||||||
|
|
||||||
|
# Initialize weights and apply final processing
|
||||||
|
self.post_init()
|
||||||
|
|
||||||
|
|
||||||
|
# GPT-2 - Example 1 #
|
||||||
|
|
||||||
|
|
||||||
|
class GPT2ClassificationHeadCustom(nn.Module):
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__()
|
||||||
|
hidden_size = config.n_embd
|
||||||
|
self.dense_1_input = nn.Linear(hidden_size, 2 * hidden_size)
|
||||||
|
self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size)
|
||||||
|
self.dense_2 = nn.Linear(4 * hidden_size, hidden_size)
|
||||||
|
self.dropout = nn.Dropout(config.resid_pdrop)
|
||||||
|
self.out_proj = nn.Linear(hidden_size, config.num_labels, bias=False)
|
||||||
|
|
||||||
|
def forward(self, x, **kwargs):
|
||||||
|
if "hidden_states" in kwargs and kwargs["hidden_states"] is not None:
|
||||||
|
# Get hidden states from last layer
|
||||||
|
hidden = kwargs["hidden_states"][-1]
|
||||||
|
else:
|
||||||
|
raise RuntimeError("Missing hidden state to process forward")
|
||||||
|
|
||||||
|
x = self.dense_1_input(x)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
|
||||||
|
hidden = self.dense_1_hidden(hidden)
|
||||||
|
hidden = torch.relu(hidden)
|
||||||
|
hidden = self.dropout(hidden)
|
||||||
|
|
||||||
|
x = torch.cat((x, hidden), dim=2)
|
||||||
|
x = self.dense_2(x)
|
||||||
|
x = torch.relu(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
|
||||||
|
x = self.out_proj(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class GPT2ForSequenceClassificationCustom(GPT2ForSequenceClassification):
|
||||||
|
def __init__(self, config):
|
||||||
|
super().__init__(config)
|
||||||
|
self.num_labels = config.num_labels
|
||||||
|
self.transformer = GPT2Model(config)
|
||||||
|
self.score = GPT2ClassificationHeadCustom(config)
|
||||||
|
|
||||||
|
# Model parallel
|
||||||
|
self.model_parallel = False
|
||||||
|
self.device_map = None
|
||||||
|
|
||||||
|
# Initialize weights and apply final processing
|
||||||
|
self.post_init()
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
input_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
||||||
|
attention_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
token_type_ids: Optional[torch.LongTensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
head_mask: Optional[torch.FloatTensor] = None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
labels: Optional[torch.LongTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
|
||||||
|
transformer_outputs = self.transformer(
|
||||||
|
input_ids,
|
||||||
|
past_key_values=past_key_values,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
token_type_ids=token_type_ids,
|
||||||
|
position_ids=position_ids,
|
||||||
|
head_mask=head_mask,
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
use_cache=use_cache,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=self.config.use_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
)
|
||||||
|
hidden_states = transformer_outputs[0]
|
||||||
|
logits = self.score(hidden_states, hidden_states=transformer_outputs.hidden_states)
|
||||||
|
del transformer_outputs.hidden_states
|
||||||
|
|
||||||
|
if input_ids is not None:
|
||||||
|
batch_size, sequence_length = input_ids.shape[:2]
|
||||||
|
else:
|
||||||
|
batch_size, sequence_length = inputs_embeds.shape[:2]
|
||||||
|
|
||||||
|
assert (
|
||||||
|
self.config.pad_token_id is not None or batch_size == 1
|
||||||
|
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
||||||
|
if self.config.pad_token_id is None:
|
||||||
|
sequence_lengths = -1
|
||||||
|
else:
|
||||||
|
if input_ids is not None:
|
||||||
|
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
|
||||||
|
logits.device
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
sequence_lengths = -1
|
||||||
|
LOGGER.warning(
|
||||||
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
||||||
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
||||||
|
)
|
||||||
|
|
||||||
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
||||||
|
|
||||||
|
loss = None
|
||||||
|
if labels is not None:
|
||||||
|
if self.config.problem_type is None:
|
||||||
|
if self.num_labels == 1:
|
||||||
|
self.config.problem_type = "regression"
|
||||||
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
||||||
|
self.config.problem_type = "single_label_classification"
|
||||||
|
else:
|
||||||
|
self.config.problem_type = "multi_label_classification"
|
||||||
|
|
||||||
|
if self.config.problem_type == "regression":
|
||||||
|
loss_fct = MSELoss()
|
||||||
|
if self.num_labels == 1:
|
||||||
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
||||||
|
else:
|
||||||
|
loss = loss_fct(pooled_logits, labels)
|
||||||
|
elif self.config.problem_type == "single_label_classification":
|
||||||
|
loss_fct = CrossEntropyLoss()
|
||||||
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
||||||
|
elif self.config.problem_type == "multi_label_classification":
|
||||||
|
loss_fct = BCEWithLogitsLoss()
|
||||||
|
loss = loss_fct(pooled_logits, labels)
|
||||||
|
if not return_dict:
|
||||||
|
output = (pooled_logits,) + transformer_outputs[1:]
|
||||||
|
return ((loss,) + output) if loss is not None else output
|
||||||
|
|
||||||
|
return SequenceClassifierOutputWithPast(
|
||||||
|
loss=loss,
|
||||||
|
logits=pooled_logits,
|
||||||
|
past_key_values=transformer_outputs.past_key_values,
|
||||||
|
hidden_states=transformer_outputs.hidden_states,
|
||||||
|
attentions=transformer_outputs.attentions,
|
||||||
|
)
|
4727
main.ipynb
Normal file
4727
main.ipynb
Normal file
File diff suppressed because one or more lines are too long
104
prepare_ag_news.py
Normal file
104
prepare_ag_news.py
Normal file
@ -0,0 +1,104 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
|
||||||
|
import json
|
||||||
|
import logging
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
from datasets import load_dataset
|
||||||
|
|
||||||
|
LOGGER = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
def save_limited_data(file_path: Path) -> None:
|
||||||
|
all_text = file_path.read_text().split("\n")
|
||||||
|
text = all_text[:2500] + all_text[-2500:]
|
||||||
|
save_path = file_path.parent / f"{file_path.stem}-5k.json"
|
||||||
|
save_path.write_text("\n".join(text))
|
||||||
|
LOGGER.info(f"Saved limited ({len(text)}) version in: {save_path}")
|
||||||
|
|
||||||
|
def save_as_translations(original_save_path: Path, data_to_save: list[dict], label_translation: dict) -> None:
|
||||||
|
file_name = "s2s-" + original_save_path.name
|
||||||
|
file_path = original_save_path.parent / file_name
|
||||||
|
|
||||||
|
LOGGER.info(f"Saving into: {file_path}")
|
||||||
|
with open(file_path, "wt") as f_write:
|
||||||
|
for data_line in data_to_save:
|
||||||
|
label = data_line["label"]
|
||||||
|
new_label = label_translation.get(label, str(label))
|
||||||
|
data_line["label"] = new_label
|
||||||
|
data_line_str = json.dumps(data_line)
|
||||||
|
f_write.write(f"{data_line_str}\n")
|
||||||
|
|
||||||
|
save_limited_data(file_path)
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
logging.basicConfig(level=logging.INFO)
|
||||||
|
loaded_data = load_dataset("ag_news")
|
||||||
|
LOGGER.info(f"Loaded dataset ag_news: {loaded_data}")
|
||||||
|
|
||||||
|
save_path = Path("data/")
|
||||||
|
save_train_path = save_path / "train.json"
|
||||||
|
save_valid_path = save_path / "valid.json"
|
||||||
|
save_test_path = save_path / "test.json"
|
||||||
|
if not save_path.exists():
|
||||||
|
save_path.mkdir()
|
||||||
|
|
||||||
|
# Read train and validation data
|
||||||
|
data_train, data_valid, data_test = [], [], []
|
||||||
|
for source_data, dataset in [
|
||||||
|
(loaded_data["train"], data_train),
|
||||||
|
(loaded_data["test"], data_valid),
|
||||||
|
]:
|
||||||
|
for i, data in enumerate(source_data):
|
||||||
|
data_line = {
|
||||||
|
"label": int(data["label"]),
|
||||||
|
"text": data["text"],
|
||||||
|
}
|
||||||
|
dataset.append(data_line)
|
||||||
|
LOGGER.info(f"Train: {len(data_train):6d}")
|
||||||
|
|
||||||
|
# Split validation set into 2 classes for validation and test splitting
|
||||||
|
data_class_1, data_class_2, data_class_3, data_class_4 = [], [], [], []
|
||||||
|
for data in data_valid:
|
||||||
|
label = data["label"]
|
||||||
|
if label == 0:
|
||||||
|
data_class_1.append(data)
|
||||||
|
elif label == 1:
|
||||||
|
data_class_2.append(data)
|
||||||
|
elif label == 2:
|
||||||
|
data_class_3.append(data)
|
||||||
|
elif label == 3:
|
||||||
|
data_class_4.append(data)
|
||||||
|
|
||||||
|
LOGGER.info(f"Label 1: {len(data_class_1):6d}")
|
||||||
|
LOGGER.info(f"Label 2: {len(data_class_2):6d}")
|
||||||
|
LOGGER.info(f"Label 3: {len(data_class_3):6d}")
|
||||||
|
LOGGER.info(f"Label 3: {len(data_class_4):6d}")
|
||||||
|
|
||||||
|
# Split 2 classes into validation and test
|
||||||
|
size_half_class_1 = int(len(data_class_1) / 2)
|
||||||
|
size_half_class_2 = int(len(data_class_2) / 2)
|
||||||
|
size_half_class_3 = int(len(data_class_3) / 2)
|
||||||
|
size_half_class_4 = int(len(data_class_4) / 2)
|
||||||
|
data_valid = data_class_1[:size_half_class_1] + data_class_2[:size_half_class_2] + data_class_3[:size_half_class_3] + data_class_4[:size_half_class_4]
|
||||||
|
data_test = data_class_1[size_half_class_1:] + data_class_2[size_half_class_2:] + data_class_3[size_half_class_3:] + data_class_4[size_half_class_4:]
|
||||||
|
LOGGER.info(f"Valid: {len(data_valid):6d}")
|
||||||
|
LOGGER.info(f"Test : {len(data_test):6d}")
|
||||||
|
|
||||||
|
# Save files
|
||||||
|
for file_path, data_to_save in [
|
||||||
|
(save_train_path, data_train),
|
||||||
|
(save_valid_path, data_valid),
|
||||||
|
(save_test_path, data_test),
|
||||||
|
]:
|
||||||
|
LOGGER.info(f"Saving into: {file_path}")
|
||||||
|
label_translation = {0: "negative", 1: "positive"}
|
||||||
|
with open(file_path, "wt") as f_write:
|
||||||
|
for data_line in data_to_save:
|
||||||
|
data_line_str = json.dumps(data_line)
|
||||||
|
f_write.write(f"{data_line_str}\n")
|
||||||
|
|
||||||
|
save_limited_data(file_path)
|
||||||
|
save_as_translations(file_path, data_to_save, label_translation)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
692
run_glue.py
Normal file
692
run_glue.py
Normal file
@ -0,0 +1,692 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
# coding=utf-8
|
||||||
|
# Copyright 2020 The HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
""" Finetuning the library models for sequence classification on GLUE."""
|
||||||
|
# You can also adapt this script on your own text classification task. Pointers for this are left as comments.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import random
|
||||||
|
import sys
|
||||||
|
import warnings
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
from typing import Optional
|
||||||
|
|
||||||
|
import datasets
|
||||||
|
import evaluate
|
||||||
|
import numpy as np
|
||||||
|
from datasets import load_dataset
|
||||||
|
|
||||||
|
import transformers
|
||||||
|
from transformers import (
|
||||||
|
AutoConfig,
|
||||||
|
AutoModelForSequenceClassification,
|
||||||
|
AutoTokenizer,
|
||||||
|
DataCollatorWithPadding,
|
||||||
|
EvalPrediction,
|
||||||
|
HfArgumentParser,
|
||||||
|
PretrainedConfig,
|
||||||
|
Trainer,
|
||||||
|
TrainingArguments,
|
||||||
|
default_data_collator,
|
||||||
|
set_seed,
|
||||||
|
)
|
||||||
|
from transformers.trainer_utils import get_last_checkpoint
|
||||||
|
from transformers.utils import check_min_version, send_example_telemetry
|
||||||
|
from transformers.utils.versions import require_version
|
||||||
|
|
||||||
|
from custom_model import RobertaForSequenceClassificationCustomSimple, RobertaForSequenceClassificationCustom, \
|
||||||
|
RobertaForSequenceClassificationCustomAlternative, GPT2ForSequenceClassificationCustomSimple, \
|
||||||
|
GPT2ForSequenceClassificationCustom
|
||||||
|
from save_on_end_epoch import SaveOnEndEpochTrainerCallback
|
||||||
|
|
||||||
|
MODEL_NAME_TO_CLASS = {
|
||||||
|
"roberta_simple": RobertaForSequenceClassificationCustomSimple,
|
||||||
|
"roberta_hidden": RobertaForSequenceClassificationCustom,
|
||||||
|
"roberta_hidden_v2": RobertaForSequenceClassificationCustomAlternative,
|
||||||
|
"gpt2_simple": GPT2ForSequenceClassificationCustomSimple,
|
||||||
|
"gpt2_hidden": GPT2ForSequenceClassificationCustom,
|
||||||
|
}
|
||||||
|
|
||||||
|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
|
||||||
|
check_min_version("4.34.0")
|
||||||
|
|
||||||
|
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
|
||||||
|
|
||||||
|
task_to_keys = {
|
||||||
|
"cola": ("sentence", None),
|
||||||
|
"mnli": ("premise", "hypothesis"),
|
||||||
|
"mrpc": ("sentence1", "sentence2"),
|
||||||
|
"qnli": ("question", "sentence"),
|
||||||
|
"qqp": ("question1", "question2"),
|
||||||
|
"rte": ("sentence1", "sentence2"),
|
||||||
|
"sst2": ("sentence", None),
|
||||||
|
"stsb": ("sentence1", "sentence2"),
|
||||||
|
"wnli": ("sentence1", "sentence2"),
|
||||||
|
}
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class DataTrainingArguments:
|
||||||
|
"""
|
||||||
|
Arguments pertaining to what data we are going to input our model for training and eval.
|
||||||
|
|
||||||
|
Using `HfArgumentParser` we can turn this class
|
||||||
|
into argparse arguments to be able to specify them on
|
||||||
|
the command line.
|
||||||
|
"""
|
||||||
|
|
||||||
|
task_name: Optional[str] = field(
|
||||||
|
default=None,
|
||||||
|
metadata={"help": "The name of the task to train on: " + ", ".join(task_to_keys.keys())},
|
||||||
|
)
|
||||||
|
dataset_name: Optional[str] = field(
|
||||||
|
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
|
||||||
|
)
|
||||||
|
dataset_config_name: Optional[str] = field(
|
||||||
|
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
|
||||||
|
)
|
||||||
|
max_seq_length: int = field(
|
||||||
|
default=128,
|
||||||
|
metadata={
|
||||||
|
"help": (
|
||||||
|
"The maximum total input sequence length after tokenization. Sequences longer "
|
||||||
|
"than this will be truncated, sequences shorter will be padded."
|
||||||
|
)
|
||||||
|
},
|
||||||
|
)
|
||||||
|
overwrite_cache: bool = field(
|
||||||
|
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
|
||||||
|
)
|
||||||
|
pad_to_max_length: bool = field(
|
||||||
|
default=True,
|
||||||
|
metadata={
|
||||||
|
"help": (
|
||||||
|
"Whether to pad all samples to `max_seq_length`. "
|
||||||
|
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
|
||||||
|
)
|
||||||
|
},
|
||||||
|
)
|
||||||
|
max_train_samples: Optional[int] = field(
|
||||||
|
default=None,
|
||||||
|
metadata={
|
||||||
|
"help": (
|
||||||
|
"For debugging purposes or quicker training, truncate the number of training examples to this "
|
||||||
|
"value if set."
|
||||||
|
)
|
||||||
|
},
|
||||||
|
)
|
||||||
|
max_eval_samples: Optional[int] = field(
|
||||||
|
default=None,
|
||||||
|
metadata={
|
||||||
|
"help": (
|
||||||
|
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
|
||||||
|
"value if set."
|
||||||
|
)
|
||||||
|
},
|
||||||
|
)
|
||||||
|
max_predict_samples: Optional[int] = field(
|
||||||
|
default=None,
|
||||||
|
metadata={
|
||||||
|
"help": (
|
||||||
|
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
|
||||||
|
"value if set."
|
||||||
|
)
|
||||||
|
},
|
||||||
|
)
|
||||||
|
train_file: Optional[str] = field(
|
||||||
|
default=None, metadata={"help": "A csv or a json file containing the training data."}
|
||||||
|
)
|
||||||
|
validation_file: Optional[str] = field(
|
||||||
|
default=None, metadata={"help": "A csv or a json file containing the validation data."}
|
||||||
|
)
|
||||||
|
test_file: Optional[str] = field(default=None, metadata={"help": "A csv or a json file containing the test data."})
|
||||||
|
|
||||||
|
def __post_init__(self):
|
||||||
|
if self.task_name is not None:
|
||||||
|
self.task_name = self.task_name.lower()
|
||||||
|
if self.task_name not in task_to_keys.keys():
|
||||||
|
raise ValueError("Unknown task, you should pick one in " + ",".join(task_to_keys.keys()))
|
||||||
|
elif self.dataset_name is not None:
|
||||||
|
pass
|
||||||
|
elif self.train_file is None or self.validation_file is None:
|
||||||
|
raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.")
|
||||||
|
else:
|
||||||
|
train_extension = self.train_file.split(".")[-1]
|
||||||
|
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
|
||||||
|
validation_extension = self.validation_file.split(".")[-1]
|
||||||
|
assert (
|
||||||
|
validation_extension == train_extension
|
||||||
|
), "`validation_file` should have the same extension (csv or json) as `train_file`."
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ModelArguments:
|
||||||
|
"""
|
||||||
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
|
||||||
|
"""
|
||||||
|
|
||||||
|
model_name_or_path: str = field(
|
||||||
|
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
|
||||||
|
)
|
||||||
|
config_name: Optional[str] = field(
|
||||||
|
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
|
||||||
|
)
|
||||||
|
tokenizer_name: Optional[str] = field(
|
||||||
|
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
|
||||||
|
)
|
||||||
|
cache_dir: Optional[str] = field(
|
||||||
|
default=None,
|
||||||
|
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
|
||||||
|
)
|
||||||
|
use_fast_tokenizer: bool = field(
|
||||||
|
default=True,
|
||||||
|
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
|
||||||
|
)
|
||||||
|
model_revision: str = field(
|
||||||
|
default="main",
|
||||||
|
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
|
||||||
|
)
|
||||||
|
token: str = field(
|
||||||
|
default=None,
|
||||||
|
metadata={
|
||||||
|
"help": (
|
||||||
|
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
|
||||||
|
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
|
||||||
|
)
|
||||||
|
},
|
||||||
|
)
|
||||||
|
use_auth_token: bool = field(
|
||||||
|
default=None,
|
||||||
|
metadata={
|
||||||
|
"help": "The `use_auth_token` argument is deprecated and will be removed in v4.34. Please use `token`."
|
||||||
|
},
|
||||||
|
)
|
||||||
|
trust_remote_code: bool = field(
|
||||||
|
default=False,
|
||||||
|
metadata={
|
||||||
|
"help": (
|
||||||
|
"Whether or not to allow for custom models defined on the Hub in their own modeling files. This option"
|
||||||
|
"should only be set to `True` for repositories you trust and in which you have read the code, as it will"
|
||||||
|
"execute code present on the Hub on your local machine."
|
||||||
|
)
|
||||||
|
},
|
||||||
|
)
|
||||||
|
ignore_mismatched_sizes: bool = field(
|
||||||
|
default=False,
|
||||||
|
metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."},
|
||||||
|
)
|
||||||
|
custom_model: str = field(
|
||||||
|
default=None,
|
||||||
|
metadata={
|
||||||
|
"help": "Use custom implementation from available list",
|
||||||
|
"choices": list(MODEL_NAME_TO_CLASS.keys()),
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# See all possible arguments in src/transformers/training_args.py
|
||||||
|
# or by passing the --help flag to this script.
|
||||||
|
# We now keep distinct sets of args, for a cleaner separation of concerns.
|
||||||
|
|
||||||
|
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
|
||||||
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
|
||||||
|
# If we pass only one argument to the script and it's the path to a json file,
|
||||||
|
# let's parse it to get our arguments.
|
||||||
|
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
|
||||||
|
else:
|
||||||
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
|
||||||
|
|
||||||
|
if model_args.use_auth_token is not None:
|
||||||
|
warnings.warn("The `use_auth_token` argument is deprecated and will be removed in v4.34.", FutureWarning)
|
||||||
|
if model_args.token is not None:
|
||||||
|
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
|
||||||
|
model_args.token = model_args.use_auth_token
|
||||||
|
|
||||||
|
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
|
||||||
|
# information sent is the one passed as arguments along with your Python/PyTorch versions.
|
||||||
|
send_example_telemetry("run_glue", model_args, data_args)
|
||||||
|
|
||||||
|
# Setup logging
|
||||||
|
logging.basicConfig(
|
||||||
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
||||||
|
datefmt="%m/%d/%Y %H:%M:%S",
|
||||||
|
handlers=[logging.StreamHandler(sys.stdout)],
|
||||||
|
)
|
||||||
|
|
||||||
|
if training_args.should_log:
|
||||||
|
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
|
||||||
|
transformers.utils.logging.set_verbosity_info()
|
||||||
|
|
||||||
|
log_level = training_args.get_process_log_level()
|
||||||
|
logger.setLevel(log_level)
|
||||||
|
datasets.utils.logging.set_verbosity(log_level)
|
||||||
|
transformers.utils.logging.set_verbosity(log_level)
|
||||||
|
transformers.utils.logging.enable_default_handler()
|
||||||
|
transformers.utils.logging.enable_explicit_format()
|
||||||
|
|
||||||
|
# Log on each process the small summary:
|
||||||
|
logger.warning(
|
||||||
|
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
|
||||||
|
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
|
||||||
|
)
|
||||||
|
logger.info(f"Training/evaluation parameters {training_args}")
|
||||||
|
|
||||||
|
# Detecting last checkpoint.
|
||||||
|
last_checkpoint = None
|
||||||
|
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
|
||||||
|
last_checkpoint = get_last_checkpoint(training_args.output_dir)
|
||||||
|
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
|
||||||
|
"Use --overwrite_output_dir to overcome."
|
||||||
|
)
|
||||||
|
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
|
||||||
|
logger.info(
|
||||||
|
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
|
||||||
|
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
|
||||||
|
)
|
||||||
|
|
||||||
|
# Set seed before initializing model.
|
||||||
|
set_seed(training_args.seed)
|
||||||
|
|
||||||
|
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
|
||||||
|
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
|
||||||
|
#
|
||||||
|
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
|
||||||
|
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
|
||||||
|
# label if at least two columns are provided.
|
||||||
|
#
|
||||||
|
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
|
||||||
|
# single column. You can easily tweak this behavior (see below)
|
||||||
|
#
|
||||||
|
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
|
||||||
|
# download the dataset.
|
||||||
|
if data_args.task_name is not None:
|
||||||
|
# Downloading and loading a dataset from the hub.
|
||||||
|
raw_datasets = load_dataset(
|
||||||
|
"glue",
|
||||||
|
data_args.task_name,
|
||||||
|
cache_dir=model_args.cache_dir,
|
||||||
|
token=model_args.token,
|
||||||
|
)
|
||||||
|
elif data_args.dataset_name is not None:
|
||||||
|
# Downloading and loading a dataset from the hub.
|
||||||
|
raw_datasets = load_dataset(
|
||||||
|
data_args.dataset_name,
|
||||||
|
data_args.dataset_config_name,
|
||||||
|
cache_dir=model_args.cache_dir,
|
||||||
|
token=model_args.token,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# Loading a dataset from your local files.
|
||||||
|
# CSV/JSON training and evaluation files are needed.
|
||||||
|
data_files = {"train": data_args.train_file, "validation": data_args.validation_file}
|
||||||
|
|
||||||
|
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
|
||||||
|
# when you use `do_predict` without specifying a GLUE benchmark task.
|
||||||
|
if training_args.do_predict:
|
||||||
|
if data_args.test_file is not None:
|
||||||
|
train_extension = data_args.train_file.split(".")[-1]
|
||||||
|
test_extension = data_args.test_file.split(".")[-1]
|
||||||
|
assert (
|
||||||
|
test_extension == train_extension
|
||||||
|
), "`test_file` should have the same extension (csv or json) as `train_file`."
|
||||||
|
data_files["test"] = data_args.test_file
|
||||||
|
else:
|
||||||
|
raise ValueError("Need either a GLUE task or a test file for `do_predict`.")
|
||||||
|
|
||||||
|
for key in data_files.keys():
|
||||||
|
logger.info(f"load a local file for {key}: {data_files[key]}")
|
||||||
|
|
||||||
|
if data_args.train_file.endswith(".csv"):
|
||||||
|
# Loading a dataset from local csv files
|
||||||
|
raw_datasets = load_dataset(
|
||||||
|
"csv",
|
||||||
|
data_files=data_files,
|
||||||
|
cache_dir=model_args.cache_dir,
|
||||||
|
token=model_args.token,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# Loading a dataset from local json files
|
||||||
|
raw_datasets = load_dataset(
|
||||||
|
"json",
|
||||||
|
data_files=data_files,
|
||||||
|
cache_dir=model_args.cache_dir,
|
||||||
|
token=model_args.token,
|
||||||
|
)
|
||||||
|
# See more about loading any type of standard or custom dataset at
|
||||||
|
# https://huggingface.co/docs/datasets/loading_datasets.html.
|
||||||
|
|
||||||
|
# Labels
|
||||||
|
if data_args.task_name is not None:
|
||||||
|
is_regression = data_args.task_name == "stsb"
|
||||||
|
if not is_regression:
|
||||||
|
label_list = raw_datasets["train"].features["label"].names
|
||||||
|
num_labels = len(label_list)
|
||||||
|
else:
|
||||||
|
num_labels = 1
|
||||||
|
else:
|
||||||
|
# Trying to have good defaults here, don't hesitate to tweak to your needs.
|
||||||
|
is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
|
||||||
|
if is_regression:
|
||||||
|
num_labels = 1
|
||||||
|
else:
|
||||||
|
# A useful fast method:
|
||||||
|
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
|
||||||
|
label_list = raw_datasets["train"].unique("label")
|
||||||
|
label_list.sort() # Let's sort it for determinism
|
||||||
|
num_labels = len(label_list)
|
||||||
|
|
||||||
|
# Load pretrained model and tokenizer
|
||||||
|
#
|
||||||
|
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
|
||||||
|
# download model & vocab.
|
||||||
|
config = AutoConfig.from_pretrained(
|
||||||
|
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
|
||||||
|
num_labels=num_labels,
|
||||||
|
finetuning_task=data_args.task_name,
|
||||||
|
cache_dir=model_args.cache_dir,
|
||||||
|
revision=model_args.model_revision,
|
||||||
|
token=model_args.token,
|
||||||
|
trust_remote_code=model_args.trust_remote_code,
|
||||||
|
)
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(
|
||||||
|
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
|
||||||
|
cache_dir=model_args.cache_dir,
|
||||||
|
use_fast=model_args.use_fast_tokenizer,
|
||||||
|
revision=model_args.model_revision,
|
||||||
|
token=model_args.token,
|
||||||
|
trust_remote_code=model_args.trust_remote_code,
|
||||||
|
)
|
||||||
|
custom_model = model_args.custom_model
|
||||||
|
if custom_model is not None:
|
||||||
|
# Check model and implementation is the same
|
||||||
|
if 'roberta' in custom_model and 'roberta' not in model_args.model_name_or_path:
|
||||||
|
raise RuntimeError('Model and custom implementation should be the same type: RoBERTa')
|
||||||
|
elif 'gpt2' in custom_model and 'gpt2' not in model_args.model_name_or_path:
|
||||||
|
raise RuntimeError('Model and custom implementation should be the same type: GPT-2')
|
||||||
|
|
||||||
|
# Set custom configuration in model configuration
|
||||||
|
config.use_hidden_states = 'hidden' in custom_model
|
||||||
|
logger.info(f'Using hidden states in model: {config.use_hidden_states}')
|
||||||
|
|
||||||
|
# Get class to initialize model
|
||||||
|
model_cls = MODEL_NAME_TO_CLASS[custom_model]
|
||||||
|
else:
|
||||||
|
model_cls = AutoModelForSequenceClassification
|
||||||
|
|
||||||
|
logger.info(f'Using implementation from class: {model_cls.__name__}')
|
||||||
|
model = model_cls.from_pretrained(
|
||||||
|
model_args.model_name_or_path,
|
||||||
|
from_tf=bool(".ckpt" in model_args.model_name_or_path),
|
||||||
|
config=config,
|
||||||
|
cache_dir=model_args.cache_dir,
|
||||||
|
revision=model_args.model_revision,
|
||||||
|
token=model_args.token,
|
||||||
|
trust_remote_code=model_args.trust_remote_code,
|
||||||
|
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
|
||||||
|
)
|
||||||
|
|
||||||
|
if 'gpt2' in tokenizer.name_or_path and tokenizer.pad_token is None:
|
||||||
|
logger.info(f'Set PAD token to EOS: {tokenizer.eos_token}')
|
||||||
|
tokenizer._pad_token = tokenizer.eos_token
|
||||||
|
model.config.pad_token_id = model.config.eos_token_id
|
||||||
|
|
||||||
|
# Preprocessing the raw_datasets
|
||||||
|
if data_args.task_name is not None:
|
||||||
|
sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
|
||||||
|
else:
|
||||||
|
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
|
||||||
|
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
|
||||||
|
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
|
||||||
|
sentence1_key, sentence2_key = "sentence1", "sentence2"
|
||||||
|
else:
|
||||||
|
if len(non_label_column_names) >= 2:
|
||||||
|
sentence1_key, sentence2_key = non_label_column_names[:2]
|
||||||
|
else:
|
||||||
|
sentence1_key, sentence2_key = non_label_column_names[0], None
|
||||||
|
|
||||||
|
# Padding strategy
|
||||||
|
if data_args.pad_to_max_length:
|
||||||
|
padding = "max_length"
|
||||||
|
else:
|
||||||
|
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
|
||||||
|
padding = False
|
||||||
|
|
||||||
|
# Some models have set the order of the labels to use, so let's make sure we do use it.
|
||||||
|
label_to_id = None
|
||||||
|
if (
|
||||||
|
model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id
|
||||||
|
and data_args.task_name is not None
|
||||||
|
and not is_regression
|
||||||
|
):
|
||||||
|
# Some have all caps in their config, some don't.
|
||||||
|
label_name_to_id = {k.lower(): v for k, v in model.config.label2id.items()}
|
||||||
|
if sorted(label_name_to_id.keys()) == sorted(label_list):
|
||||||
|
label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
|
||||||
|
else:
|
||||||
|
logger.warning(
|
||||||
|
"Your model seems to have been trained with labels, but they don't match the dataset: ",
|
||||||
|
f"model labels: {sorted(label_name_to_id.keys())}, dataset labels: {sorted(label_list)}."
|
||||||
|
"\nIgnoring the model labels as a result.",
|
||||||
|
)
|
||||||
|
elif data_args.task_name is None and not is_regression:
|
||||||
|
label_to_id = {v: i for i, v in enumerate(label_list)}
|
||||||
|
|
||||||
|
if label_to_id is not None:
|
||||||
|
model.config.label2id = label_to_id
|
||||||
|
model.config.id2label = {id: label for label, id in config.label2id.items()}
|
||||||
|
elif data_args.task_name is not None and not is_regression:
|
||||||
|
model.config.label2id = {l: i for i, l in enumerate(label_list)}
|
||||||
|
model.config.id2label = {id: label for label, id in config.label2id.items()}
|
||||||
|
|
||||||
|
if data_args.max_seq_length > tokenizer.model_max_length:
|
||||||
|
logger.warning(
|
||||||
|
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
|
||||||
|
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
|
||||||
|
)
|
||||||
|
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
|
||||||
|
|
||||||
|
def preprocess_function(examples):
|
||||||
|
# Tokenize the texts
|
||||||
|
args = (
|
||||||
|
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
|
||||||
|
)
|
||||||
|
result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
|
||||||
|
|
||||||
|
# Map labels to IDs (not necessary for GLUE tasks)
|
||||||
|
if label_to_id is not None and "label" in examples:
|
||||||
|
result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
|
||||||
|
return result
|
||||||
|
|
||||||
|
with training_args.main_process_first(desc="dataset map pre-processing"):
|
||||||
|
raw_datasets = raw_datasets.map(
|
||||||
|
preprocess_function,
|
||||||
|
batched=True,
|
||||||
|
load_from_cache_file=not data_args.overwrite_cache,
|
||||||
|
desc="Running tokenizer on dataset",
|
||||||
|
)
|
||||||
|
if training_args.do_train:
|
||||||
|
if "train" not in raw_datasets:
|
||||||
|
raise ValueError("--do_train requires a train dataset")
|
||||||
|
train_dataset = raw_datasets["train"]
|
||||||
|
if data_args.max_train_samples is not None:
|
||||||
|
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
|
||||||
|
train_dataset = train_dataset.select(range(max_train_samples))
|
||||||
|
|
||||||
|
if training_args.do_eval:
|
||||||
|
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
|
||||||
|
raise ValueError("--do_eval requires a validation dataset")
|
||||||
|
eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
|
||||||
|
if data_args.max_eval_samples is not None:
|
||||||
|
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
|
||||||
|
eval_dataset = eval_dataset.select(range(max_eval_samples))
|
||||||
|
|
||||||
|
if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
|
||||||
|
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
|
||||||
|
raise ValueError("--do_predict requires a test dataset")
|
||||||
|
predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"]
|
||||||
|
if data_args.max_predict_samples is not None:
|
||||||
|
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
|
||||||
|
predict_dataset = predict_dataset.select(range(max_predict_samples))
|
||||||
|
|
||||||
|
# Log a few random samples from the training set:
|
||||||
|
if training_args.do_train:
|
||||||
|
for index in random.sample(range(len(train_dataset)), 3):
|
||||||
|
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
|
||||||
|
|
||||||
|
# Get the metric function
|
||||||
|
if data_args.task_name is not None:
|
||||||
|
metric = evaluate.load("glue", data_args.task_name)
|
||||||
|
elif is_regression:
|
||||||
|
metric = evaluate.load("mse")
|
||||||
|
else:
|
||||||
|
metric = evaluate.load("accuracy")
|
||||||
|
|
||||||
|
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
|
||||||
|
# predictions and label_ids field) and has to return a dictionary string to float.
|
||||||
|
def compute_metrics(p: EvalPrediction):
|
||||||
|
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
|
||||||
|
preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
|
||||||
|
result = metric.compute(predictions=preds, references=p.label_ids)
|
||||||
|
if len(result) > 1:
|
||||||
|
result["combined_score"] = np.mean(list(result.values())).item()
|
||||||
|
return result
|
||||||
|
|
||||||
|
# Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
|
||||||
|
# we already did the padding.
|
||||||
|
if data_args.pad_to_max_length:
|
||||||
|
data_collator = default_data_collator
|
||||||
|
elif training_args.fp16:
|
||||||
|
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
|
||||||
|
else:
|
||||||
|
data_collator = None
|
||||||
|
|
||||||
|
# Initialize our Trainer
|
||||||
|
trainer = Trainer(
|
||||||
|
model=model,
|
||||||
|
args=training_args,
|
||||||
|
train_dataset=train_dataset if training_args.do_train else None,
|
||||||
|
eval_dataset=eval_dataset if training_args.do_eval else None,
|
||||||
|
compute_metrics=compute_metrics,
|
||||||
|
tokenizer=tokenizer,
|
||||||
|
data_collator=data_collator,
|
||||||
|
callbacks=[SaveOnEndEpochTrainerCallback()]
|
||||||
|
)
|
||||||
|
|
||||||
|
# Training
|
||||||
|
if training_args.do_train:
|
||||||
|
checkpoint = None
|
||||||
|
if training_args.resume_from_checkpoint is not None:
|
||||||
|
checkpoint = training_args.resume_from_checkpoint
|
||||||
|
elif last_checkpoint is not None:
|
||||||
|
checkpoint = last_checkpoint
|
||||||
|
train_result = trainer.train(resume_from_checkpoint=checkpoint)
|
||||||
|
metrics = train_result.metrics
|
||||||
|
max_train_samples = (
|
||||||
|
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
|
||||||
|
)
|
||||||
|
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
|
||||||
|
|
||||||
|
trainer.save_model() # Saves the tokenizer too for easy upload
|
||||||
|
|
||||||
|
trainer.log_metrics("train", metrics)
|
||||||
|
trainer.save_metrics("train", metrics)
|
||||||
|
trainer.save_state()
|
||||||
|
|
||||||
|
# Evaluation
|
||||||
|
if training_args.do_eval:
|
||||||
|
logger.info("*** Evaluate ***")
|
||||||
|
|
||||||
|
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
||||||
|
tasks = [data_args.task_name]
|
||||||
|
eval_datasets = [eval_dataset]
|
||||||
|
if data_args.task_name == "mnli":
|
||||||
|
tasks.append("mnli-mm")
|
||||||
|
valid_mm_dataset = raw_datasets["validation_mismatched"]
|
||||||
|
if data_args.max_eval_samples is not None:
|
||||||
|
max_eval_samples = min(len(valid_mm_dataset), data_args.max_eval_samples)
|
||||||
|
valid_mm_dataset = valid_mm_dataset.select(range(max_eval_samples))
|
||||||
|
eval_datasets.append(valid_mm_dataset)
|
||||||
|
combined = {}
|
||||||
|
|
||||||
|
for eval_dataset, task in zip(eval_datasets, tasks):
|
||||||
|
metrics = trainer.evaluate(eval_dataset=eval_dataset)
|
||||||
|
|
||||||
|
max_eval_samples = (
|
||||||
|
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
|
||||||
|
)
|
||||||
|
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
|
||||||
|
|
||||||
|
if task == "mnli-mm":
|
||||||
|
metrics = {k + "_mm": v for k, v in metrics.items()}
|
||||||
|
if task is not None and "mnli" in task:
|
||||||
|
combined.update(metrics)
|
||||||
|
|
||||||
|
trainer.log_metrics("eval", metrics)
|
||||||
|
trainer.save_metrics("eval", combined if task is not None and "mnli" in task else metrics)
|
||||||
|
|
||||||
|
if training_args.do_predict:
|
||||||
|
logger.info("*** Predict ***")
|
||||||
|
|
||||||
|
# Loop to handle MNLI double evaluation (matched, mis-matched)
|
||||||
|
tasks = [data_args.task_name]
|
||||||
|
predict_datasets = [predict_dataset]
|
||||||
|
if data_args.task_name == "mnli":
|
||||||
|
tasks.append("mnli-mm")
|
||||||
|
predict_datasets.append(raw_datasets["test_mismatched"])
|
||||||
|
|
||||||
|
for predict_dataset, task in zip(predict_datasets, tasks):
|
||||||
|
# Removing the `label` columns because it contains -1 and Trainer won't like that.
|
||||||
|
predict_dataset = predict_dataset.remove_columns("label")
|
||||||
|
predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
|
||||||
|
predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
|
||||||
|
|
||||||
|
output_predict_file = os.path.join(training_args.output_dir, f"predict_results_{task}.txt")
|
||||||
|
if trainer.is_world_process_zero():
|
||||||
|
with open(output_predict_file, "w") as writer:
|
||||||
|
logger.info(f"***** Predict results {task} *****")
|
||||||
|
writer.write("index\tprediction\n")
|
||||||
|
for index, item in enumerate(predictions):
|
||||||
|
if is_regression:
|
||||||
|
writer.write(f"{index}\t{item:3.3f}\n")
|
||||||
|
else:
|
||||||
|
item = label_list[item]
|
||||||
|
writer.write(f"{index}\t{item}\n")
|
||||||
|
|
||||||
|
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"}
|
||||||
|
if data_args.task_name is not None:
|
||||||
|
kwargs["language"] = "en"
|
||||||
|
kwargs["dataset_tags"] = "glue"
|
||||||
|
kwargs["dataset_args"] = data_args.task_name
|
||||||
|
kwargs["dataset"] = f"GLUE {data_args.task_name.upper()}"
|
||||||
|
|
||||||
|
if training_args.push_to_hub:
|
||||||
|
trainer.push_to_hub(**kwargs)
|
||||||
|
else:
|
||||||
|
trainer.create_model_card(**kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
def _mp_fn(index):
|
||||||
|
# For xla_spawn (TPUs)
|
||||||
|
main()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
25
save_on_end_epoch.py
Normal file
25
save_on_end_epoch.py
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
from transformers import TrainerCallback, TrainerControl, TrainerState, TrainingArguments
|
||||||
|
from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR
|
||||||
|
|
||||||
|
|
||||||
|
class SaveOnEndEpochTrainerCallback(TrainerCallback):
|
||||||
|
def on_epoch_end(
|
||||||
|
self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs: Any
|
||||||
|
) -> None:
|
||||||
|
training_steps = state.global_step
|
||||||
|
|
||||||
|
# Do not save if was not trained
|
||||||
|
if training_steps <= 0:
|
||||||
|
return
|
||||||
|
|
||||||
|
save_path = Path(args.output_dir) / f"{PREFIX_CHECKPOINT_DIR}-{training_steps}"
|
||||||
|
# Skip if checkpoint exists - no need to save
|
||||||
|
if save_path.exists():
|
||||||
|
return
|
||||||
|
|
||||||
|
control.should_log = True
|
||||||
|
control.should_evaluate = True
|
||||||
|
control.should_save = True
|
Loading…
Reference in New Issue
Block a user