import logging from typing import Optional, Tuple, Union import torch from torch import nn from torch.nn import MSELoss, CrossEntropyLoss, BCEWithLogitsLoss from transformers import GPT2Model, GPT2ForSequenceClassification, RobertaForSequenceClassification, RobertaModel from transformers.modeling_outputs import SequenceClassifierOutputWithPast, SequenceClassifierOutput LOGGER = logging.getLogger(__name__) # RoBERTa - simple example class RobertaClassificationHeadCustomSimple(nn.Module): def __init__(self, config): super().__init__() hidden_size = config.hidden_size self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size) self.dense_2 = nn.Linear(2 * hidden_size, hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take token (equiv. to [CLS]) x = self.dense_1(x) x = torch.relu(x) x = self.dropout(x) x = self.dense_2(x) x = torch.relu(x) x = self.dropout(x) x = self.out_proj(x) return x class RobertaForSequenceClassificationCustomSimple(RobertaForSequenceClassification): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier = RobertaClassificationHeadCustomSimple(config) # Initialize weights and apply final processing self.post_init() # RoBERTa - Example 1 class RobertaClassificationHeadCustom(nn.Module): def __init__(self, config): super().__init__() hidden_size = config.hidden_size * 2 self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size) self.dense_2 = nn.Linear(2 * hidden_size, hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(hidden_size, config.num_labels) def forward(self, features, **kwargs): if "hidden_states" in kwargs and kwargs["hidden_states"] is not None: x = torch.cat( ( features[:, 0, :], # take token (equiv. to [CLS]) from hidden states from last layer kwargs["hidden_states"][-2][:, 0, :], ), dim=1, ) else: raise RuntimeError("Missing hidden state to process forward") x = self.dense_1(x) x = torch.relu(x) x = self.dropout(x) x = self.dense_2(x) x = torch.relu(x) x = self.dropout(x) x = self.out_proj(x) return x class RobertaForSequenceClassificationCustom(RobertaForSequenceClassification): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier = RobertaClassificationHeadCustom(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=self.config.use_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, hidden_states=outputs.hidden_states) del outputs.hidden_states loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # RoBERTa - Example 2 class RobertaClassificationHeadCustomAlternative(nn.Module): def __init__(self, config): super().__init__() hidden_size = config.hidden_size self.dense_1_input = nn.Linear(hidden_size, 2 * hidden_size) self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size) self.dense_2 = nn.Linear(4 * hidden_size, hidden_size) classifier_dropout = ( config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob ) self.dropout = nn.Dropout(classifier_dropout) self.out_proj = nn.Linear(hidden_size, config.num_labels) def forward(self, features, **kwargs): x = features[:, 0, :] # take token (equiv. to [CLS]) if "hidden_states" in kwargs and kwargs["hidden_states"] is not None: # take token (equiv. to [CLS]) from hidden states from last layer hidden = kwargs["hidden_states"][-1][:, 0, :] else: raise RuntimeError("Missing hidden state to process forward") x = self.dense_1_input(x) x = torch.relu(x) x = self.dropout(x) hidden = self.dense_1_hidden(hidden) hidden = torch.relu(hidden) hidden = self.dropout(hidden) x = torch.cat((x, hidden), dim=1) x = self.dense_2(x) x = torch.relu(x) x = self.dropout(x) x = self.out_proj(x) return x class RobertaForSequenceClassificationCustomAlternative(RobertaForSequenceClassification): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.config = config self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier = RobertaClassificationHeadCustomAlternative(config) # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=self.config.use_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output, hidden_states=outputs.hidden_states) del outputs.hidden_states loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) # GPT-2 - simple example # class GPT2ClassificationHeadCustomSimple(nn.Module): def __init__(self, config): super().__init__() hidden_size = config.n_embd self.dense_1 = nn.Linear(hidden_size, 2 * hidden_size) self.dense_2 = nn.Linear(2 * hidden_size, hidden_size) self.dropout = nn.Dropout(config.resid_pdrop) self.out_proj = nn.Linear(hidden_size, config.num_labels, bias=False) def forward(self, x): x = self.dense_1(x) x = torch.relu(x) x = self.dropout(x) x = self.dense_2(x) x = torch.relu(x) x = self.dropout(x) x = self.out_proj(x) return x class GPT2ForSequenceClassificationCustomSimple(GPT2ForSequenceClassification): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPT2Model(config) self.score = GPT2ClassificationHeadCustomSimple(config) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() # GPT-2 - Example 1 # class GPT2ClassificationHeadCustom(nn.Module): def __init__(self, config): super().__init__() hidden_size = config.n_embd self.dense_1_input = nn.Linear(hidden_size, 2 * hidden_size) self.dense_1_hidden = nn.Linear(hidden_size, 2 * hidden_size) self.dense_2 = nn.Linear(4 * hidden_size, hidden_size) self.dropout = nn.Dropout(config.resid_pdrop) self.out_proj = nn.Linear(hidden_size, config.num_labels, bias=False) def forward(self, x, **kwargs): if "hidden_states" in kwargs and kwargs["hidden_states"] is not None: # Get hidden states from last layer hidden = kwargs["hidden_states"][-1] else: raise RuntimeError("Missing hidden state to process forward") x = self.dense_1_input(x) x = torch.relu(x) x = self.dropout(x) hidden = self.dense_1_hidden(hidden) hidden = torch.relu(hidden) hidden = self.dropout(hidden) x = torch.cat((x, hidden), dim=2) x = self.dense_2(x) x = torch.relu(x) x = self.dropout(x) x = self.out_proj(x) return x class GPT2ForSequenceClassificationCustom(GPT2ForSequenceClassification): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = GPT2Model(config) self.score = GPT2ClassificationHeadCustom(config) # Model parallel self.model_parallel = False self.device_map = None # Initialize weights and apply final processing self.post_init() def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, SequenceClassifierOutputWithPast]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=self.config.use_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.score(hidden_states, hidden_states=transformer_outputs.hidden_states) del transformer_outputs.hidden_states if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] assert ( self.config.pad_token_id is not None or batch_size == 1 ), "Cannot handle batch sizes > 1 if no padding token is defined." if self.config.pad_token_id is None: sequence_lengths = -1 else: if input_ids is not None: sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to( logits.device ) else: sequence_lengths = -1 LOGGER.warning( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutputWithPast( loss=loss, logits=pooled_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, )