import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import pandas as pd import numpy as np import os import mlflow import mlflow.pytorch from mlflow.models.signature import infer_signature from urllib.parse import urlparse import logging logging.basicConfig(level=logging.WARN) logger = logging.getLogger(__name__) mlflow.set_tracking_uri("http://localhost:5000") mlflow.set_experiment("s487194") # Wczytanie danych print(os.getcwd()) data = pd.read_csv("./Sales.csv") # Przygotowanie danych data["Profit_Category"] = pd.cut(data["Profit"], bins=[-np.inf, 500, 1000, np.inf], labels=[0, 1, 2]) bike = data.loc[:, ['Customer_Age', 'Customer_Gender', 'Country','State', 'Product_Category', 'Sub_Category', 'Profit_Category']] bikes = pd.get_dummies(bike, columns=['Country', 'State', 'Product_Category', 'Sub_Category', 'Customer_Gender']) X = bikes.drop('Profit_Category', axis=1).values y = bikes['Profit_Category'].values X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=0) scaler = StandardScaler() X = scaler.fit_transform(X) #### Tworzenie tensorów X_train = X_train.astype(np.float32) X_test = X_test.astype(np.float32) y_train = y_train.astype(np.float32) y_test = y_test.astype(np.float32) X_train = torch.FloatTensor(X_train) X_test = torch.FloatTensor(X_test) y_train = torch.LongTensor(y_train) y_test = torch.LongTensor(y_test) ### Model class ANN_Model(nn.Module): def __init__(self,input_features=82,hidden1=20,hidden2=20,out_features=3): super().__init__() self.f_connected1=nn.Linear(input_features,hidden1) self.f_connected2=nn.Linear(hidden1,hidden2) self.out=nn.Linear(hidden2,out_features) def forward(self, x): x=F.relu(self.f_connected1(x)) x=F.relu(self.f_connected2(x)) x=self.out(x) return x torch.manual_seed(20) model = ANN_Model() def calculate_accuracy(model, X, y): with torch.no_grad(): outputs = model(X) _, predicted = torch.max(outputs.data, 1) total = y.size(0) correct = (predicted == y).sum().item() accuracy = correct / total * 100 return accuracy loss_function = nn.CrossEntropyLoss() optimizer = torch.optim.Adam(model.parameters(), lr=0.01) epochs = 100 final_losses = [] accuracy_list = [] with mlflow.start_run() as run: # Logowanie parametrów modelu mlflow.log_param("hidden_layer_1", 20) mlflow.log_param("hidden_layer_2", 20) mlflow.log_param("output_layer", 3) mlflow.log_param("learning_rate", 0.01) mlflow.log_param("epochs", epochs) for i in range(epochs): i = i + 1 y_pred = model.forward(X_train) loss = loss_function(y_pred, y_train) final_losses.append(loss) train_accuracy = calculate_accuracy(model, X_train, y_train) test_accuracy = calculate_accuracy(model, X_test, y_test) # Logowanie metryk po każdej epoce mlflow.log_metric("train_loss", loss.item(), step=i) mlflow.log_metric("train_accuracy", train_accuracy, step=i) mlflow.log_metric("test_accuracy", test_accuracy, step=i) print(f"Epoch: {i}, Loss: {loss.item()}, Train Accuracy: {train_accuracy}%, Test Accuracy: {test_accuracy}%") optimizer.zero_grad() loss.backward() optimizer.step() torch.save(model,"classificationn_model.pt") signature = infer_signature(X_train.numpy(), model(X_train).detach().numpy()) input_example = {"input": X_train[0].numpy().tolist()} # Log model tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme if tracking_url_type_store != "file": mlflow.pytorch.log_model(model, "model", signature=signature, input_example=input_example, registered_model_name="ClassificationModel") else: mlflow.pytorch.log_model(model, "model", signature=signature, input_example=input_example)